Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Certifiably Adversarially Robust Detection of Out-of-Distribution Data #40

Open
nocotan opened this issue Feb 25, 2021 · 0 comments
Open

Comments

@nocotan
Copy link
Member

nocotan commented Feb 25, 2021

一言でいうと

最悪ケース保証付きOOD detectionの手法であるGOODを提案

論文リンク

https://papers.nips.cc/paper/2020/file/b90c46963248e6d7aab1e0f429743ca0-Paper.pdf

著者/所属機関

Julian Bitterwolf et al.
(University of Tübingen)

投稿日付(yyyy/MM/dd)

2020/12

概要

DNNsはOODサンプルに対するoverconfident問題を持つ.
論文では,OOD detectionの最悪ケースを保証することを考える.

Screen Shot 2021-02-26 at 3 12 05

新規性・差分

  • 最悪ケース保証付きOOD detectionの手法であるGOODを提案

手法

Screen Shot 2021-02-26 at 3 15 58

結果

Screen Shot 2021-02-26 at 3 12 37

Screen Shot 2021-02-26 at 3 12 58

コメント

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant