We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
OOD detectionのためのMAMLに基づくfew-shot learning手法を提案.
https://papers.nips.cc/paper/2020/file/28e209b61a52482a0ae1cb9f5959c792-Paper.pdf
Taewon Jeong and Heeyoung Kim (Department of Industrial and Systems Engineering, KAIST)
2020/12
OOD detectionのためのfew-shot learning手法を提案. これを達成するために,論文ではin-distributionサンプルに類似したOODサンプルを人工的に生成する. 提案手法はmodel-agnostic meta-learning (MAML)に基づいており,モデルの初期化だけでなく,タスクを通して初期擬似サンプルも学習する.
The text was updated successfully, but these errors were encountered:
nocotan
No branches or pull requests
一言でいうと
OOD detectionのためのMAMLに基づくfew-shot learning手法を提案.
論文リンク
https://papers.nips.cc/paper/2020/file/28e209b61a52482a0ae1cb9f5959c792-Paper.pdf
著者/所属機関
Taewon Jeong and Heeyoung Kim
(Department of Industrial and Systems Engineering, KAIST)
投稿日付(yyyy/MM/dd)
2020/12
概要
OOD detectionのためのfew-shot learning手法を提案.
これを達成するために,論文ではin-distributionサンプルに類似したOODサンプルを人工的に生成する.
提案手法はmodel-agnostic meta-learning (MAML)に基づいており,モデルの初期化だけでなく,タスクを通して初期擬似サンプルも学習する.
新規性・差分
手法
結果
コメント
The text was updated successfully, but these errors were encountered: