We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://papers.nips.cc/paper/2020/file/24368c745de15b3d2d6279667debcba3-Paper.pdf
Bijan Mazaheri et al. (Department of Computing and Mathematical Sciences, California Institute of Technology)
2020/12
ほとんどの共変量シフト適応の手法は密度比に基づくが,密度比の推定は異なるデータセット間で推定が難しく,パラメータチューニングも必要になる. 著者らは,経験累積分布関数によって共変量シフトを扱う新しい手法を提案.
The text was updated successfully, but these errors were encountered:
nocotan
No branches or pull requests
一言でいうと
論文リンク
https://papers.nips.cc/paper/2020/file/24368c745de15b3d2d6279667debcba3-Paper.pdf
著者/所属機関
Bijan Mazaheri et al.
(Department of Computing and Mathematical Sciences, California Institute of Technology)
投稿日付(yyyy/MM/dd)
2020/12
概要
ほとんどの共変量シフト適応の手法は密度比に基づくが,密度比の推定は異なるデータセット間で推定が難しく,パラメータチューニングも必要になる.
著者らは,経験累積分布関数によって共変量シフトを扱う新しい手法を提案.
新規性・差分
手法
結果
コメント
The text was updated successfully, but these errors were encountered: