Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adversarial Style Mining for One-Shot Unsupervised Domain Adaptation #27

Open
nocotan opened this issue Feb 25, 2021 · 0 comments
Open
Assignees

Comments

@nocotan
Copy link
Member

nocotan commented Feb 25, 2021

一言でいうと

One-Shot Unsupervised Domain Adaptationに取り組むAdversarial Style Mining (ASM)を提案.

論文リンク

https://papers.nips.cc/paper/2020/file/ed265bc903a5a097f61d3ec064d96d2e-Paper.pdf

著者/所属機関

Yawei Luo et al.,
(School of Computer Science & Technology, Huazhong University of Science & Technology)

投稿日付(yyyy/MM/dd)

2020/12

概要

One-Shot Unsupervised Domain Adaptationに関する論文.
敵対学習のフレームワークで,style transferモジュールとtask-specificモジュールを組み合わせることでこの問題に取り組む.

Screen Shot 2021-02-25 at 21 26 47

新規性・差分

  • One-Shot Unsupervised Domain Adaptationに取り組むAdversarial Style Mining (ASM)を提案.ASMはstyle transferモジュールとtask-specificモジュールを組み合わせている.ASMは反復的に有用な変換先画像を探索し,One-shotなシナリオでもドメイン適応を実現する.

手法

Screen Shot 2021-02-25 at 21 27 18

Screen Shot 2021-02-25 at 21 27 37

Screen Shot 2021-02-25 at 21 27 43

結果

Screen Shot 2021-02-25 at 21 27 51

Screen Shot 2021-02-25 at 21 28 02

Screen Shot 2021-02-25 at 21 28 09

コメント

@nocotan nocotan self-assigned this Feb 25, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant