Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning #10

Open
nocotan opened this issue May 28, 2021 · 0 comments

Comments

@nocotan
Copy link
Member

nocotan commented May 28, 2021

一言でいうと

分散学習時に勾配を{-1, 0, 1}で量子化するTernGradを提案.

論文リンク

https://proceedings.neurips.cc/paper/2017/file/89fcd07f20b6785b92134bd6c1d0fa42-Paper.pdf

著者/所属機関

Duke University

投稿日付(yyyy/MM/dd)

NeurIPS2017

概要

Screen Shot 2021-05-31 at 21 40 59

新規性・差分

  • 分散学習時に勾配を{-1, 0, 1}で量子化するTernGradを提案
  • 適当な仮定を置くことでTernGradの収束性を理論的に証明
  • 導出されたバウンドから,収束性を向上させるlayer-wise ternarizingとgradient clippingを提案

手法

TernGradアルゴリズム

Screen Shot 2021-05-31 at 21 52 07

Screen Shot 2021-05-31 at 21 41 32

収束性の理論解析

一般的な勾配アルゴリズムでは以下の二つが仮定されている:

Screen Shot 2021-05-31 at 21 54 06

これに加えて,TernGradの理論解析のために以下の追加の仮定を置く.

Screen Shot 2021-05-31 at 21 55 08

Screen Shot 2021-05-31 at 21 56 42

結果

Screen Shot 2021-05-31 at 21 41 56

Screen Shot 2021-05-31 at 21 42 20

Screen Shot 2021-05-31 at 21 45 51

Screen Shot 2021-05-31 at 21 46 18

Screen Shot 2021-05-31 at 21 46 24

コメント

https://github.com/wenwei202/terngrad

@nocotan nocotan self-assigned this May 28, 2021
@nocotan nocotan changed the title [WIP] TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning May 31, 2021
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant