diff --git a/.gitignore b/.gitignore index 47b0044..c355559 100644 --- a/.gitignore +++ b/.gitignore @@ -23,3 +23,4 @@ old_data/* t2.py venv/* xgboost/* +.idea/ \ No newline at end of file diff --git a/auto_ml/DataFrameVectorizer.py b/auto_ml/DataFrameVectorizer.py index cf3259b..c3ea495 100644 --- a/auto_ml/DataFrameVectorizer.py +++ b/auto_ml/DataFrameVectorizer.py @@ -224,7 +224,7 @@ def transform_categorical_col(self, col_vals, col_name): encoded_col_names = [] for trained_feature, col_idx in self.vocabulary_.items(): - if trained_feature[:len_col_name] == col_name: + if trained_feature[:len_col_name] == col_name and '=' in trained_feature: encoded_col_names.append([trained_feature, col_idx]) num_trained_cols += 1 if min_transformed_idx is None: diff --git a/auto_ml/predictor.py b/auto_ml/predictor.py index 9b11ddc..f6e319b 100644 --- a/auto_ml/predictor.py +++ b/auto_ml/predictor.py @@ -45,18 +45,18 @@ from evolutionary_search import EvolutionaryAlgorithmSearchCV # For handling parallelism edge cases -def _pickle_method(m): - if m.im_self is None: - return getattr, (m.im_class, m.im_func.func_name) - else: - return getattr, (m.im_self, m.im_func.func_name) - -try: - import copy_reg +if sys.version_info[0] < 3: + import copy_reg as copy_reg + + + def _pickle_method(m): + if m.im_self is None: + return getattr, (m.im_class, m.im_func.func_name) + else: + return getattr, (m.im_self, m.im_func.func_name) + + copy_reg.pickle(types.MethodType, _pickle_method) -except: - import copyreg - copyreg.pickle(types.MethodType, _pickle_method) class Predictor(object): diff --git a/auto_ml/utils_models.py b/auto_ml/utils_models.py index 4fb5898..9f00d89 100644 --- a/auto_ml/utils_models.py +++ b/auto_ml/utils_models.py @@ -591,7 +591,7 @@ def insert_deep_learning_model(pipeline_step, file_name): # Load the Keras model here keras_file_name = file_name[:-5] + random_name + '_keras_deep_learning_model.h5' - model = keras_load_model(keras_file_name) + model = load_keras_model(keras_file_name) # Put the model back in place so that we can still use it to get predictions without having to load it back in from disk return model