Skip to content

Commit 5ee4989

Browse files
authored
Merge pull request #4461 from JPBotelho/main
fix: typos
2 parents 7d84fc9 + 7b55da6 commit 5ee4989

File tree

11 files changed

+16
-16
lines changed

11 files changed

+16
-16
lines changed
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
import Image from '@theme/IdealImage';
22
import cloud_service_action_menu from '@site/static/images/_snippets/cloud-service-actions-menu.png';
33

4-
Select your service, followed by `Data souces` -> `Predefined sample data`.
4+
Select your service, followed by `Data sources` -> `Predefined sample data`.
55

66
<Image size="md" img={cloud_service_action_menu} alt="ClickHouse Cloud service Actions menu showing Data sources and Predefined sample data options" border />

docs/dictionary/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -208,7 +208,7 @@ LIMIT 5
208208
FORMAT PrettyCompactMonoBlock
209209

210210
┌───────Id─┬─Title─────────────────────────────────────────────────────────┬─Location──────────────┐
211-
52296928Comparision between two Strings in ClickHouse │ Spain │
211+
52296928Comparison between two Strings in ClickHouse │ Spain │
212212
52345137 │ How to use a file to migrate data from mysql to a clickhouse? │ 中国江苏省Nanjing Shi │
213213
61452077 │ How to change PARTITION in clickhouse │ Guangzhou, 广东省中国 │
214214
55608325 │ Clickhouse select last record without max() on all table │ Moscow, Russia │

docs/getting-started/example-datasets/dbpedia.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -116,7 +116,7 @@ LIMIT 20
116116
```
117117

118118
Note down the query latency so that we can compare it with the query latency of ANN (using vector index).
119-
Also record the query latency with cold OS file cache and with `max_theads=1` to recognize the real compute
119+
Also record the query latency with cold OS file cache and with `max_threads=1` to recognize the real compute
120120
usage and storage bandwidth usage (extrapolate it to a production dataset with millions of vectors!)
121121

122122
## Build a vector similarity index {#build-vector-similarity-index}

docs/getting-started/example-datasets/laion.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ data = data[['url', 'caption', 'NSFW', 'similarity', "image_embedding", "text_em
5353
data['image_embedding'] = data['image_embedding'].apply(lambda x: x.tolist())
5454
data['text_embedding'] = data['text_embedding'].apply(lambda x: x.tolist())
5555

56-
# this small hack is needed becase caption sometimes contains all kind of quotes
56+
# this small hack is needed because caption sometimes contains all kind of quotes
5757
data['caption'] = data['caption'].apply(lambda x: x.replace("'", " ").replace('"', " "))
5858

5959
# export data as CSV file
@@ -132,7 +132,7 @@ For now, we can run the embedding of a random LEGO set picture as `target`.
132132
10 rows in set. Elapsed: 4.605 sec. Processed 100.38 million rows, 309.98 GB (21.80 million rows/s., 67.31 GB/s.)
133133
```
134134

135-
## Run an approximate vector similarity search with a vector simialrity index {#run-an-approximate-vector-similarity-search-with-a-vector-similarity-index}
135+
## Run an approximate vector similarity search with a vector similarity index {#run-an-approximate-vector-similarity-search-with-a-vector-similarity-index}
136136

137137
Let's now define two vector similarity indexes on the table.
138138

docs/getting-started/example-datasets/tpcds.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -408,7 +408,7 @@ CREATE TABLE store (
408408
s_zip LowCardinality(Nullable(String)),
409409
s_country LowCardinality(Nullable(String)),
410410
s_gmt_offset Nullable(Decimal(7,2)),
411-
s_tax_precentage Nullable(Decimal(7,2)),
411+
s_tax_percentage Nullable(Decimal(7,2)),
412412
PRIMARY KEY (s_store_sk)
413413
);
414414

docs/integrations/data-ingestion/apache-spark/spark-native-connector.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -426,7 +426,7 @@ object NativeSparkWrite extends App {
426426
from pyspark.sql import SparkSession
427427
from pyspark.sql import Row
428428

429-
# Feel free to use any other packages combination satesfying the compatability martix provided above.
429+
# Feel free to use any other packages combination satesfying the compatibility matrix provided above.
430430
packages = [
431431
"com.clickhouse.spark:clickhouse-spark-runtime-3.4_2.12:0.8.0",
432432
"com.clickhouse:clickhouse-client:0.7.0",
@@ -461,7 +461,7 @@ df.writeTo("clickhouse.default.example_table").append()
461461
<TabItem value="SparkSQL" label="Spark SQL">
462462

463463
```sql
464-
-- resultTalbe is the Spark intermediate df we want to insert into clickhouse.default.example_table
464+
-- resultTable is the Spark intermediate df we want to insert into clickhouse.default.example_table
465465
INSERT INTO TABLE clickhouse.default.example_table
466466
SELECT * FROM resultTable;
467467

docs/integrations/data-ingestion/clickpipes/mysql/source/aurora.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ If ClickPipes tries to resume replication and the required binlog files have bee
4242

4343
By default, Aurora MySQL purges the binary log as soon as possible (i.e., _lazy purging_). We recommend increasing the binlog retention interval to at least **72 hours** to ensure availability of binary log files for replication under failure scenarios. To set an interval for binary log retention ([`binlog retention hours`](https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-stored-proc-configuring.html#mysql_rds_set_configuration-usage-notes.binlog-retention-hours)), use the [`mysql.rds_set_configuration`](https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-stored-proc-configuring.html#mysql_rds_set_configuration) procedure:
4444

45-
[//]: # "NOTE Most CDC providers recommend the maximum retention period for Aurora RDS (7 days/168 hours). Since this has an impact on disk usage, we conservatively recommend a mininum of 3 days/72 hours."
45+
[//]: # "NOTE Most CDC providers recommend the maximum retention period for Aurora RDS (7 days/168 hours). Since this has an impact on disk usage, we conservatively recommend a minimum of 3 days/72 hours."
4646

4747
```text
4848
mysql=> call mysql.rds_set_configuration('binlog retention hours', 72);

docs/integrations/data-ingestion/clickpipes/mysql/source/rds.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@ If ClickPipes tries to resume replication and the required binlog files have bee
4242

4343
By default, Amazon RDS purges the binary log as soon as possible (i.e., _lazy purging_). We recommend increasing the binlog retention interval to at least **72 hours** to ensure availability of binary log files for replication under failure scenarios. To set an interval for binary log retention ([`binlog retention hours`](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-stored-proc-configuring.html#mysql_rds_set_configuration-usage-notes.binlog-retention-hours)), use the [`mysql.rds_set_configuration`](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql-stored-proc-configuring.html#mysql_rds_set_configuration) procedure:
4444

45-
[//]: # "NOTE Most CDC providers recommend the maximum retention period for RDS (7 days/168 hours). Since this has an impact on disk usage, we conservatively recommend a mininum of 3 days/72 hours."
45+
[//]: # "NOTE Most CDC providers recommend the maximum retention period for RDS (7 days/168 hours). Since this has an impact on disk usage, we conservatively recommend a minimum of 3 days/72 hours."
4646

4747
```text
4848
mysql=> call mysql.rds_set_configuration('binlog retention hours', 72);

docs/integrations/data-ingestion/s3/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1027,7 +1027,7 @@ ClickHouse Keeper is responsible for coordinating the replication of data across
10271027

10281028
See the [network ports](../../../guides/sre/network-ports.md) list when you configure the security settings in AWS so that your servers can communicate with each other, and you can communicate with them.
10291029

1030-
All three servers must listen for network connections so that they can communicate between the servers and with S3. By default, ClickHouse listens ony on the loopback address, so this must be changed. This is configured in `/etc/clickhouse-server/config.d/`. Here is a sample that configures ClickHouse and ClickHouse Keeper to listen on all IP v4 interfaces. see the documentation or the default configuration file `/etc/clickhouse/config.xml` for more information.
1030+
All three servers must listen for network connections so that they can communicate between the servers and with S3. By default, ClickHouse listens only on the loopback address, so this must be changed. This is configured in `/etc/clickhouse-server/config.d/`. Here is a sample that configures ClickHouse and ClickHouse Keeper to listen on all IP v4 interfaces. see the documentation or the default configuration file `/etc/clickhouse/config.xml` for more information.
10311031

10321032
```xml title="/etc/clickhouse-server/config.d/networking.xml"
10331033
<clickhouse>

docs/integrations/index.mdx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -224,7 +224,7 @@ We are actively compiling this list of ClickHouse integrations below, so it's no
224224
|Google Cloud Storage|<Gcssvg alt="GCS Logo" style={{width: '3rem', 'height': '3rem'}}/>|Data ingestion|Import from, export to, and transform GCS data in flight with ClickHouse built-in `S3` functions.|[Documentation](/integrations/data-ingestion/s3/index.md)|
225225
|Golang|<Golangsvg alt="Golang logo" style={{width: '3rem' }}/>|Language client|The Go client uses the native interface for a performant, low-overhead means of connecting to ClickHouse.|[Documentation](/integrations/language-clients/go/index.md)|
226226
|HDFS|<Hdfssvg alt="HDFS logo" style={{width: '3rem'}}/>|Data ingestion|Provides integration with the [Apache Hadoop](https://en.wikipedia.org/wiki/Apache_Hadoop) ecosystem by allowing to manage data on [HDFS](https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html) via ClickHouse.|[Documentation](/engines/table-engines/integrations/hdfs)|
227-
|Hive|<Hivesvg alt="Hive logo" style={{width: '3rem'}}/>|Data ingestionn|The Hive engine allows you to perform `SELECT` quries on HDFS Hive table.|[Documentation](/engines/table-engines/integrations/hive)|
227+
|Hive|<Hivesvg alt="Hive logo" style={{width: '3rem'}}/>|Data ingestionn|The Hive engine allows you to perform `SELECT` queries on HDFS Hive table.|[Documentation](/engines/table-engines/integrations/hive)|
228228
|Hudi|<Image img={hudi} size="logo" alt="Apache Hudi logo"/>|Data ingestion| provides a read-only integration with existing Apache [Hudi](https://hudi.apache.org/) tables in Amazon S3.|[Documentation](/engines/table-engines/integrations/hudi)|
229229
|Iceberg|<Image img={iceberg} size="logo" alt="Apache Iceberg logo"/>|Data ingestion|Provides a read-only integration with existing Apache [Iceberg](https://iceberg.apache.org/) tables in Amazon S3.|[Documentation](/engines/table-engines/integrations/iceberg)|
230230
|Java, JDBC|<Javasvg alt="Java logo" style={{width: '3rem'}}/>|Language client|The Java client and JDBC driver.|[Documentation](/integrations/language-clients/java/index.md)|
@@ -327,7 +327,7 @@ We are actively compiling this list of ClickHouse integrations below, so it's no
327327
|SiSense|<Image img={sisense_logo} size="logo" alt="SiSense logo"/>|Data visualization|Embed analytics into any application or workflow|[Website](https://www.sisense.com/data-connectors/)|
328328
|SigNoz|<Image img={signoz_logo} size="logo" alt="SigNoz logo"/>|Data visualization|Open Source Observability Platform|[Documentation](https://www.signoz.io/docs/architecture/)|
329329
|Snappy Flow|<Image img={snappy_flow_logo} size="logo" alt="Snappy Flow logo"/>|Data management|Collects ClickHouse database metrics via plugin.|[Documentation](https://docs.snappyflow.io/docs/Integrations/clickhouse/instance)|
330-
|Soda|<Image img={soda_logo} size="logo" alt="Soda logo"/>|Data quality|Soda integration makes it easy for organziations to detect, resolve, and prevent data quality issues by running data quality checks on data before it is loaded into the database.|[Website](https://www.soda.io/integrations/clickhouse)|
330+
|Soda|<Image img={soda_logo} size="logo" alt="Soda logo"/>|Data quality|Soda integration makes it easy for organizations to detect, resolve, and prevent data quality issues by running data quality checks on data before it is loaded into the database.|[Website](https://www.soda.io/integrations/clickhouse)|
331331
|Splunk|<Image img={splunk_logo} size="logo" alt="Splunk logo"/>|Data integration|Splunk modular input to import to Splunk the ClickHouse Cloud Audit logs.|[Website](https://splunkbase.splunk.com/app/7709),<br/>[Documentation](/integrations/tools/data-integration/splunk/index.md)|
332332
|StreamingFast|<Image img={streamingfast_logo} size="logo" alt="StreamingFast logo"/>|Data ingestion| Blockchain-agnostic, parallelized and streaming-first data engine. |[Website](https://www.streamingfast.io/)|
333333
|Streamkap|<Image img={streamkap_logo} size="logo" alt="Streamkap logo"/>|Data ingestion|Setup real-time CDC (Change Data Capture) streaming to ClickHouse with high throughput in minutes.|[Documentation](https://docs.streamkap.com/docs/clickhouse)|

0 commit comments

Comments
 (0)