-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaximumPath.cpp
117 lines (103 loc) · 2.98 KB
/
MaximumPath.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
// C/C++ program to find maximum path sum in Binary Tree
#include<iostream>
#include<algorithm>
using namespace std;
// A binary tree node
struct Node
{
int data;
struct Node* left, *right;
};
// A utility function to allocate a new node
struct Node* newNode(int data)
{
struct Node* newNode = new Node;
newNode->data = data;
newNode->left = newNode->right = NULL;
return (newNode);
}
// This function returns overall maximum path sum in 'res'
// And returns max path sum going through root.
int findMaxUtil(Node* root, int &res)
{
//Base Case
if (root == NULL)
return 0;
// l and r store maximum path sum going through left and
// right child of root respectively
int l = findMaxUtil(root->left,res);
int r = findMaxUtil(root->right,res);
// Max path for parent call of root. This path must
// include at-most one child of root
int max_single = max(max(l, r) + root->data, root->data);
// Max Top represents the sum when the Node under
// consideration is the root of the maxsum path and no
// ancestors of root are there in max sum path
int max_top = max(max_single, l + r + root->data);
res = max(res, max_top); // Store the Maximum Result.
return max_single;
}
// Returns maximum path sum in tree with given root
int findMaxSum(Node *root)
{
// Initialize result
int res = INT_MIN;
// Compute and return result
findMaxUtil(root, res);
return res;
}
int maxDepth(Node* node)
{
if (node == NULL)
return 0;
else
{
/* compute the depth of each subtree */
int lDepth = maxDepth(node->left);
int rDepth = maxDepth(node->right);
/* use the larger one */
if (lDepth > rDepth)
return(lDepth + 1);
else return(rDepth + 1);
}
}
int countNodes(Node* root) {
if(!root) return 0;
Node *temp = root;
int height = 0, count = 0, level;
while(temp) {
temp = temp->left;
height ++;
}
temp = root;
level = height - 2;
while(level >= 0) {
Node *left = temp->left;
for(int i = 0;i < level;i ++) {
left = left->right;
}
if(left) {
temp = temp->right;
count += (1 << level);
} else temp = temp->left;
level --;
}
if(temp) count ++;
return (1 << (height - 1)) + count - 1;
}
// Driver program
int main4(void)
{
struct Node *root = newNode(10);
root->left = newNode(23);
root->right = newNode(10);
root->left->left = newNode(20);
root->left->right = newNode(1);
root->right->right = newNode(-25);
root->right->right->left = newNode(3);
root->right->right->right = newNode(4);
//cout << "Max path sum is " << findMaxSum(root);
// cout << "Max path sum is " << maxDepth(root);
cout<<"Count node in complete binary tree" <<countNodes(root);
return 0;
}