-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmobilenet_rm_filt_pt.py
176 lines (156 loc) · 6.69 KB
/
mobilenet_rm_filt_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
MobileNet-v1 model written in PyTorch
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import time
total_time = 0
conv1_first_time = 0
conv1_time = 0
bn1_time = 0
relu1_time = 0
conv2_time = 0
bn2_time = 0
relu2_time = 0
avg_pool_time = 0
linear_time = 0
class Block(nn.Module):
global total_time, conv1_time, bn1_time, relu1_time, conv2_time, bn2_time, relu2_time
'''Depthwise conv + Pointwise conv'''
def __init__(self, in_planes=3, out_planes=32, stride=1):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False)
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(out_planes)
def forward(self, x):
global total_time, conv1_time, bn1_time, relu1_time, conv2_time, bn2_time, relu2_time
start = time.time()
out = self.conv1(x)
conv1_time += (time.time() - start)
start = time.time()
out = self.bn1(out)
bn1_time += (time.time() - start)
start = time.time()
out = F.relu(out)
relu1_time += (time.time() - start)
start = time.time()
out = self.conv2(out)
conv2_time += (time.time() - start)
start = time.time()
out = self.bn2(out)
bn2_time += (time.time() - start)
start = time.time()
out = F.relu(out)
relu2_time += (time.time() - start)
# out = F.relu(self.bn1(self.conv1(x)))
# out = F.relu(self.bn2(self.conv2(out)))
return out
class MobileNet(nn.Module):
# (128,2) means conv planes=128, conv stride=2, by default conv stride=1
cfg = [64, (128, 2), 128, (256, 2), 256, (512, 2), 512, 512, 512, 512, 512, (1024, 2), 1024]
def __init__(self, num_classes=10, mode=1):
super(MobileNet, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.layers = self._make_layers(in_planes=32)
self.linear = nn.Linear(1024, num_classes)
self.mode = mode
def change_mode(self):
# mode 1: pruning
# mode 2: measurement
self.mode = 2
def _make_layers(self, in_planes):
layers = []
for x in self.cfg:
out_planes = x if isinstance(x, int) else x[0]
stride = 1 if isinstance(x, int) else x[1]
layers.append(Block(in_planes, out_planes, stride))
in_planes = out_planes
return nn.Sequential(*layers)
def forward(self, x):
global conv1_first_time, relu1_time, bn1_time, avg_pool_time, linear_time
start = time.time()
out = self.conv1(x)
conv1_first_time += (time.time() - start)
start = time.time()
out = self.bn1(out)
bn1_time += (time.time() - start)
start = time.time()
out = F.relu(out)
relu1_time += (time.time() - start)
# out = F.relu(self.bn1(self.conv1(x)))
out = self.layers(out)
start = time.time()
out = F.avg_pool2d(out, 2)
avg_pool_time += (time.time() - start)
out = out.view(out.size(0), -1)
start = time.time()
out = self.linear(out)
linear_time += (time.time() - start)
# Pruning
if self.mode == 1:
return out
# Measurement
return out, conv1_first_time, conv1_time, bn1_time, relu1_time, conv2_time, bn2_time, relu2_time, avg_pool_time, linear_time
def _apply_mask(self):
# print(self.mask_dict.keys())
for name, param in self.state_dict().items():
if name in self.mask_dict.keys():
# print(param.data.shape, self.mask_dict[name].shape)
param.data *= self.mask_dict[name]
#
# else:
# print("name: ", name)
def remove_channel(input_model):
'''
Input: model
description: the pruned model
Ouput: new_model
description: the new model generating by removing one-zero channels
'''
new_model = copy.deepcopy(input_model)
score_list = torch.sum(torch.abs(new_model.conv1.weight.data), dim=(1,2,3))
next_layer_score_list = torch.sum(torch.abs(new_model.layers[0].conv1.weight.data), dim=(1,2,3))
score_list = score_list * next_layer_score_list
out_planes_num = int(torch.count_nonzero(score_list))
out_planes_idx = torch.squeeze(torch.nonzero(score_list, as_tuple=False))
conv1_wgt=copy.deepcopy(new_model.conv1.weight.data)
new_model.conv1 = nn.Conv2d(3, out_planes_num, kernel_size=3, stride=1, padding=1, bias=False)
new_model.bn1 = nn.BatchNorm2d(out_planes_num)
new_model.conv1.weight.data[:,:,:,:] = conv1_wgt[out_planes_idx,:,:,:]
in_planes_num = out_planes_num
in_planes_idx = out_planes_idx
for i, block in enumerate(new_model.layers):
if i in [1, 3, 5, 11]:
stride = 2
else:
stride = 1
conv1_wgt=copy.deepcopy(block.conv1.weight.data)
new_model.layers[i].conv1 = nn.Conv2d(in_planes_num, in_planes_num, kernel_size=3, stride=stride,
padding=1, groups=in_planes_num, bias=False)
new_model.layers[i].bn1 = nn.BatchNorm2d(in_planes_num)
new_model.layers[i].conv1.weight.data[:,:,:,:] = conv1_wgt[in_planes_idx,:,:,:]
score_list = torch.sum(torch.abs(block.conv2.weight.data), dim=(1,2,3))
if i < len(new_model.layers)-1:
next_layer_score_list = torch.sum(torch.abs(new_model.layers[i+1].conv1.weight.data), dim=(1,2,3))
score_list = score_list * next_layer_score_list
out_planes_num = int(torch.count_nonzero(score_list))
# print("out planes num: ", out_planes_num)
out_planes_idx = torch.squeeze(torch.nonzero(score_list, as_tuple=False))
conv2_wgt=copy.deepcopy(block.conv2.weight.data)
new_model.layers[i].conv2 = nn.Conv2d(in_planes_num, out_planes_num, kernel_size=1, stride=1,
padding=0, bias=False)
new_model.layers[i].bn2 = nn.BatchNorm2d(out_planes_num)
for idx_out, n in enumerate(out_planes_idx):
new_model.layers[i].conv2.weight.data[idx_out,:,:,:] = conv2_wgt[n,in_planes_idx,:,:]
in_planes_num = out_planes_num
in_planes_idx = out_planes_idx
lin_wgt=copy.deepcopy(new_model.linear.weight.data)
lin_bias=copy.deepcopy(new_model.linear.bias.data)
new_model.linear = nn.Linear(in_planes_num, 10)
new_model.linear.weight.data = lin_wgt[:, out_planes_idx]
new_model.linear.bias.data = lin_bias
return new_model