-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04-features_for_inference.py
81 lines (64 loc) · 2.64 KB
/
04-features_for_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env ipython
from rich.console import Console
import os
import polars as pl
from bids.layout import parse_file_entities
from epileptology.features.featureextraction import FeatureExtractor
import epileptology.preprocessing as pp
from szdetect import project_settings as s
from pathlib import Path
def main():
console = Console()
in_docker = os.environ.get("IN_DOCKER", False)
if in_docker:
edf_file = f"/data/{os.environ.get('INPUT')}"
else:
edf_file = "/mnt/data/SeizureDetectionChallenge2025/BIDS_tuh_eeg_seizure/sub-277/ses-00/eeg/sub-277_ses-00_task-szMonitoring_run-01_eeg.edf"
dataset_name = "test_set"
eeg = pp.read_edf(edf_file, **s.PREPROCESSING_KWARGS["read_edf"])
eeg = pp.filter_eeg(eeg, **s.PREPROCESSING_KWARGS["filter_eeg"])
eeg = eeg.apply_function(pp.normalize_eeg)
eeg = pp.segment_overlapping_windows(eeg, **s.PREPROCESSING_KWARGS["segment_eeg"])
n_epochs = len(eeg.events)
step_size = s.PREPROCESSING_KWARGS["segment_eeg"]["step_size"]
console.log(
f"EEG data loaded and preprocessed. Total number of epochs: {n_epochs:_}. Step size: {step_size}s"
)
batch_size = 200
extractor = FeatureExtractor(
s.FEATURES,
s.FRAMEWORKS,
log_dir=s.FEATURE_LOG_DIR,
num_workers=s.NUM_WORKERS,
console=console,
)
file_entities = parse_file_entities(edf_file)
subject = file_entities["subject"]
session = file_entities["session"]
run = file_entities["run"]
unique_id = f"{dataset_name}_{subject}_{session}_{run}"
for i in range(0, n_epochs, batch_size):
console.log(f"Computing features for epochs {i}:{i + batch_size}")
batch_end = min(i + batch_size, n_epochs)
epoch_batch = eeg[i:batch_end]
parquet_sink = s.FEATURES_DIR / f"{unique_id}_batch-{i}.parquet"
filename = Path(edf_file).name
log_file = f"{filename}_batch-{i}"
try:
features = extractor.extract_feature(epoch_batch, log_file)
features = features.with_columns(
dataset_name=pl.lit(dataset_name),
subject=pl.lit(subject),
session=pl.lit(session),
run=pl.lit(run),
unique_id=pl.lit(unique_id),
second=(pl.col("epoch").cast(pl.Int32) * step_size),
)
features.write_parquet(parquet_sink)
console.log("Features saved to file")
except (FileNotFoundError, IndexError, ValueError) as e:
error_log = {"Patient_filename": str(edf_file), "Error": str(e)}
print(error_log)
continue
if __name__ == "__main__":
main()