-
Notifications
You must be signed in to change notification settings - Fork 124
Description
Spark-Bench version (version number, tag, or git commit hash)
spark-bench_2.3.0_0.4.0-RELEASE
Details of your cluster setup (Spark version, Standalone/Yarn/Local/Etc)
Spark 2.2.0, Yarn
Scala version on your cluster
Your exact configuration file (with system details anonymized for security)
spark-bench = {
spark-submit-config = [{
spark-args = {
master = "yarn"
executor-memory = 5G
num-executors = 5
}
workload-suites = [
{
descr = "Graph Gen"
benchmark-output = "console"
workloads = [
{
name = "graph-data-generator"
vertices = 1000
output = "hdfs:///one-thousand-vertex-graph.txt"
}
]
}
]
}]
}
Relevant stacktrace
18/04/30 22:21:00 INFO cluster.YarnSchedulerBackend$YarnDriverEndpoint: Registered executor NettyRpcEndpointRef(spark-client://Executor) (**********:40656) with ID 1
18/04/30 22:21:00 INFO storage.BlockManagerMasterEndpoint: Registering block manager **********:40021 with 2.5 GB RAM, BlockManagerId(1, *********, 40021, None)
18/04/30 22:21:15 INFO cluster.YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after waiting maxRegisteredResourcesWaitingTime: 30000(ms)
Exception in thread "main" java.lang.Exception: Unrecognized or unspecified save format. Please check the file extension or add a file format to your arguments: Some(hdfs:///one-thousand-vertex-graph.txt)
at com.ibm.sparktc.sparkbench.utils.SparkFuncs$.verifyFormatOrThrow(SparkFuncs.scala:92)
at com.ibm.sparktc.sparkbench.utils.SparkFuncs$.verifyOutput(SparkFuncs.scala:35)
at com.ibm.sparktc.sparkbench.workload.Workload$class.run(Workload.scala:49)
at com.ibm.sparktc.sparkbench.datageneration.GraphDataGen.run(GraphDataGen.scala:90)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$SuiteKickoff$$runSerially$1.apply(SuiteKickoff.scala:98)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$SuiteKickoff$$runSerially$1.apply(SuiteKickoff.scala:98)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$.com$ibm$sparktc$sparkbench$workload$SuiteKickoff$$runSerially(SuiteKickoff.scala:98)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$2.apply(SuiteKickoff.scala:72)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$$anonfun$2.apply(SuiteKickoff.scala:67)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.Range.foreach(Range.scala:160)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:104)
at com.ibm.sparktc.sparkbench.workload.SuiteKickoff$.run(SuiteKickoff.scala:67)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$MultipleSuiteKickoff$$runSuitesSerially$1.apply(MultipleSuiteKickoff.scala:38)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$com$ibm$sparktc$sparkbench$workload$MultipleSuiteKickoff$$runSuitesSerially$1.apply(MultipleSuiteKickoff.scala:38)
at scala.collection.immutable.List.foreach(List.scala:381)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$.com$ibm$sparktc$sparkbench$workload$MultipleSuiteKickoff$$runSuitesSerially(MultipleSuiteKickoff.scala:38)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$run$1.apply(MultipleSuiteKickoff.scala:28)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$$anonfun$run$1.apply(MultipleSuiteKickoff.scala:25)
at scala.collection.immutable.List.foreach(List.scala:381)
at com.ibm.sparktc.sparkbench.workload.MultipleSuiteKickoff$.run(MultipleSuiteKickoff.scala:25)
at com.ibm.sparktc.sparkbench.cli.CLIKickoff$.main(CLIKickoff.scala:30)
at com.ibm.sparktc.sparkbench.cli.CLIKickoff.main(CLIKickoff.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:775)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
18/04/30 22:21:15 INFO spark.SparkContext: Invoking stop() from shutdown hook
Description of your problem and any other relevant info
Despite using "hdfs:///one-thousand-vertex-graph.txt" as output, it complains about incorrect output format: