-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathdcnn_train.py
198 lines (169 loc) · 7.95 KB
/
dcnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import sys,os
os.environ["MXNET_CPU_WORKER_NTHREADS"] = "2"
import numpy as np
import mxnet as mx
from DataIter import DataIter
import argparse
import logging
logging.basicConfig()
class k_max_pool(mx.operator.CustomOp):
def __init__(self, k):
super(k_max_pool, self).__init__()
self.k = int(k)
def forward(self, is_train, req, in_data, out_data, aux):
x = in_data[0].asnumpy()
assert(4 == len(x.shape))
ind = np.argsort(x, axis = 2)
sorted_ind = np.sort(ind[:,:,-(self.k):,:], axis = 2)
dim0, dim1, dim2, dim3 = sorted_ind.shape
self.indices_dim0 = np.arange(dim0).repeat(dim1 * dim2 * dim3)
self.indices_dim1 = np.transpose(np.arange(dim1).repeat(dim2 * dim3).reshape((dim1*dim2*dim3, 1)).repeat(dim0, axis=1)).flatten()
self.indices_dim2 = sorted_ind.flatten()
self.indices_dim3 = np.transpose(np.arange(dim3).repeat(dim2).reshape((dim3, dim2)).repeat(dim0 * dim1, axis = 1)).flatten()
y = x[self.indices_dim0, self.indices_dim1, self.indices_dim2, self.indices_dim3].reshape(sorted_ind.shape)
self.assign(out_data[0], req[0], mx.nd.array(y))
def backward(self, req, out_grad, in_data, out_data, in_grad, aux):
x = out_grad[0].asnumpy()
y = in_data[0].asnumpy()
assert(4 == len(x.shape))
assert(4 == len(y.shape))
y[:,:,:,:] = 0
y[self.indices_dim0, self.indices_dim1, self.indices_dim2, self.indices_dim3] \
= x.reshape([x.shape[0] * x.shape[1] * x.shape[2] * x.shape[3],])
self.assign(in_grad[0], req[0], mx.nd.array(y))
@mx.operator.register("k_max_pool")
class k_max_poolProp(mx.operator.CustomOpProp):
def __init__(self, k):
self.k = int(k)
super(k_max_poolProp, self).__init__(True)
def list_argument(self):
return ['data']
def list_outputs(self):
return ['output']
def infer_shape(self, in_shape):
data_shape = in_shape[0]
assert(len(data_shape) == 4)
out_shape = (data_shape[0], data_shape[1], self.k, data_shape[3])
return [data_shape], [out_shape]
def create_operator(self, ctx, shapes, dtypes):
return k_max_pool(self.k)
def fold(x, shape):
if (int(shape[3])%2 != 0):
pad_width = (0,0,0,0,0,0,0,1)
x = mx.sym.Pad(data=x, mode='edge', pad_width=pad_width)
long_rows = mx.sym.Reshape(data=x, shape=(int(shape[0]), int(shape[1]), -1, 2))
sumed = mx.sym.sum(long_rows, axis=3, keepdims=True)
fold_out = mx.sym.Reshape(data=sumed, shape=(int(shape[0]), int(shape[1]), int(shape[2]), int(shape[3])/2))
return fold_out
def get_dcnn(sentence_size, embed_size, batch_size, vocab_size,
dropout = 0.5,
ktop = 4,
filter_widths=[7,5],
fiters=[6,14],
conv_wds=[0.000015,0.0000015],
pool_widths=[10,5]):
data = mx.sym.Variable('data')
# embedding layer
embed_layer = mx.sym.Embedding(data=data, input_dim=vocab_size, output_dim=embed_size, name='embed', attr={'wd_mult':'0.00005'})
embed_out = mx.sym.Reshape(data=embed_layer, shape=(batch_size, 1, sentence_size, embed_size))
layers = [embed_out]
# ConvFoldingPoolLayer
nl = float(len(fiters))
for i in xrange(len(fiters)):
# row wise wide conv
conv_outi = mx.sym.Convolution(data=layers[-1], name="conv%s" % i, kernel=(filter_widths[i], 1), num_filter=fiters[i], pad=(filter_widths[i]-1,0), attr={'wd_mult':str(conv_wds[i])})
_, out_shape, _ = conv_outi.infer_shape(data = (batch_size, sentence_size))
assert(1 == len(out_shape))
fold_outi = fold(conv_outi, out_shape[0])
# get ki for axis=2
ki = ktop if i == nl-1 else max(ktop, int(np.ceil((nl-i-1) / nl * float(out_shape[0][2]))))
pool_outi = mx.symbol.Custom(data=fold_outi, name='k_max_pool%s' % i, op_type='k_max_pool', k=ki)
act_outi = mx.sym.Activation(data=pool_outi, act_type='tanh', name="act%s" % i)
layers.append(act_outi)
if dropout > 0.0:
dp_out = mx.sym.Dropout(data=layers[-1], p=dropout, name="dp")
else:
dp_out = layers[-1]
fc = mx.symbol.FullyConnected(data=dp_out, num_hidden=2, name='fc', attr={'wd_mult':'0.00005'})
dcnn = mx.symbol.SoftmaxOutput(data = fc, name = 'softmax')
return dcnn
def train_dcnn(args, ctx):
# setup logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
kv = mx.kvstore.create(args.kv_store)
print "Loading data..."
train_iter = DataIter(args.data_dir+'/binarySentiment/train.txt', args.data_dir+'/binarySentiment/train_lbl.txt', args.batch_size)
val_iter = DataIter(args.data_dir+'/binarySentiment/test.txt', args.data_dir+'/binarySentiment/test_lbl.txt', args.batch_size)
data_names = [k[0] for k in train_iter.provide_data]
label_names = [k[0] for k in train_iter.provide_label]
def sym_gen(seq_len):
sym = get_dcnn(seq_len, args.embed_size, args.batch_size, args.vocab_size)
data_names = ['data']
label_names = ['softmax_label']
return (sym, data_names, label_names)
mod = mx.mod.BucketingModule(sym_gen,
default_bucket_key=train_iter.default_bucket_key,
context=ctx)
# initialization
arg_params = None
aux_params = None
optimizer_params = {'wd': 1.0,
'learning_rate': 0.1,
'eps': 1e-6}
model_prefix = args.prefix + "-%d" % (kv.rank)
epoch_end_callback = mx.callback.do_checkpoint(model_prefix, period=1)
batch_end_callback = mx.callback.Speedometer(args.batch_size, frequent=args.frequent)
eval_metric = mx.metric.CompositeEvalMetric()
metric_acc = mx.metric.Accuracy()
metric_ce = mx.metric.CrossEntropy()
eval_metric.add(metric_acc)
eval_metric.add(metric_ce)
# start train
print "start training..."
mod.fit(train_iter, val_iter, eval_metric=eval_metric,
epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback,
kvstore=kv,
optimizer='adagrad', optimizer_params=optimizer_params,
initializer=mx.init.Xavier(factor_type="in", magnitude=2.34),
arg_params=arg_params,
allow_missing=True,
begin_epoch=args.begin_epoch,
num_epoch=args.num_epoch,
validation_metric='acc')
print "Train done for epoch: %s"%args.num_epoch
def parse_args():
parser = argparse.ArgumentParser(description='Train a Dynamic Convolutional Neural Network ')
parser.add_argument('--prefix', dest='prefix', help='new model prefix',
default=os.path.join(os.getcwd(), 'model', 'dcnn'), type=str)
parser.add_argument('--data_dir', dest='data_dir', help='data path',
default="./data", type=str)
parser.add_argument('--vocab_size', dest='vocab_size', help='vocab size of dataset',
default=15448, type=int)
parser.add_argument('--gpus', help='GPU device to train with, eg: 0,1,2',
default=None, type=str)
parser.add_argument('--begin_epoch', dest='begin_epoch', help='begin epoch of training',
default=0, type=int)
parser.add_argument('--num_epoch', dest='num_epoch', help='num epoch of training',
default=5, type=int)
parser.add_argument('--frequent', dest='frequent', help='frequency of logging',
default=500, type=int)
parser.add_argument('--kv_store', dest='kv_store', help='the kv-store type',
default='local', type=str)
parser.add_argument('--work_load_list', dest='work_load_list', help='work load for different devices',
default=None, type=list)
parser.add_argument('--batch_size', dest='batch_size', help='batch size',
default=4, type=int)
parser.add_argument('--embed_size', dest='embed_size', help='embedding size of one word, must be even',
default=48, type=int)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if not os.path.exists(args.prefix):
os.makedirs(args.prefix)
ctx = mx.cpu() if args.gpus is None else [mx.gpu(int(i)) for i in args.gpus.split(',')]
train_dcnn(args,ctx)