-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiments_lear.py
199 lines (161 loc) · 10.3 KB
/
run_experiments_lear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import pandas as pd
import numpy as np
import datetime as dt
import pickle
from copy import copy
import os
from adaptive_standardisation import adaptive_standardisation
from epftoolbox.models import LEAR
from epftoolbox.models._lear import LEAR_adaptive_normalization as LEAR_as
from epftoolbox.evaluation import MAE, sMAPE
import concurrent.futures
def process_combination(combination):
apply_adaptive_standardisation = combination[0]
dataset = combination[1]
calibration_window = combination[2]
df = pd.read_csv(f"Data//{dataset}")
df['Date'] = pd.to_datetime(df.Date)
if dataset in ["BE.csv", "FR.csv"]:
date_test = dt.datetime(2015, 1, 4)
elif dataset in ["DE_2023.csv", "SP_2023.csv"] :
date_test = dt.datetime(2022, 1, 1)
elif dataset in ["NP.csv"] :
date_test = dt.datetime(2016, 12, 27)
if apply_adaptive_standardisation:
original_df = copy(df)
df['Simple Date'] = df.Date.dt.strftime("%Y-%m-%d")
df['Hour'] = df.Date.dt.hour
df.columns = ['Date', 'Price', 'Exogenous 1', 'Exogenous 2', 'Simple Date', 'Hour']
try:
with open(f'dicts_as_py//dataset_{dataset.replace(".csv", "")}.pkl', 'rb') as f:
dict_new_df = pickle.load(f)
except:
dict_new_df = adaptive_standardisation(df, window_size=7)
with open(f'dicts_as_py//dataset_{dataset.replace(".csv", "")}.pkl', 'wb') as f:
pickle.dump(dict_new_df, f)
df = pd.DataFrame(dict_new_df)[['Date', 'Price', 'Exogenous 1', 'Exogenous 2']]
df['Date'] = pd.to_datetime(df.Date)
df_scalers = pd.DataFrame({'Date':dict_new_df['Date'], 'scaler':dict_new_df['scaler']})
df = df.set_index('Date')
df.columns = ['Price', 'Exogenous 1', 'Exogenous 2']
if apply_adaptive_standardisation:
original_df = original_df.set_index('Date')
original_df.columns = ['Price', 'Exogenous 1', 'Exogenous 2']
df_train = df[df.index < date_test]
df_test= df[df.index >= date_test]
forecast = pd.DataFrame(index=df_test.index[::24], columns=['h' + str(k) for k in range(24)])
if apply_adaptive_standardisation:
real_values = original_df[original_df.index >= date_test].loc[:, ['Price']].values.reshape(-1, 24)
else:
real_values = df_test.loc[:, ['Price']].values.reshape(-1, 24)
real_values = pd.DataFrame(real_values, index=forecast.index, columns=forecast.columns)
forecast_dates = forecast.index
if False:
if apply_adaptive_standardisation:
model = LEAR_as(calibration_window=calibration_window)
else:
model = LEAR(calibration_window=calibration_window)
# For loop over the recalibration dates
for date in forecast_dates: #tqdm(forecast_dates[:10], file=sys.stdout):
# For simulation purposes, we assume that the available data is
# the data up to current date where the prices of current date are not known
data_available = pd.concat([df_train, df_test.loc[:date + pd.Timedelta(hours=23), :]], axis=0)
# We set the real prices for current date to NaN in the dataframe of available data
data_available.loc[date:date + pd.Timedelta(hours=23), 'Price'] = np.NaN
# Recalibrating the model with the most up-to-date available data and making a prediction
# for the next day
if apply_adaptive_standardisation:
scalers = df_scalers[(df_scalers.Date >= date) & (df_scalers.Date <= date + pd.Timedelta(hours=23))].scaler.to_numpy()
Yp = model.recalibrate_and_forecast_next_day(df=data_available, next_day_date=date,
calibration_window=calibration_window, scalers=scalers)
else:
Yp = model.recalibrate_and_forecast_next_day(df=data_available, next_day_date=date,
calibration_window=calibration_window)
# Saving the current prediction
forecast.loc[date, :] = Yp
# Computing metrics up-to-current-date
mae = np.mean(MAE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values))
smape = np.mean(sMAPE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values)) * 100
# Pringint information
# print('\r\033[2K\033[1G', end='', flush=True) # TQDM compatibility
print('{} - sMAPE: {:.2f}% | MAE: {:.3f}'.format(str(date)[:10], smape, mae))
if apply_adaptive_standardisation:
forecast.to_csv(f"Results_py//dataset_{dataset.replace('.csv', '')}model_LEAR_as_calibration_window{calibration_window}.csv")
else:
forecast.to_csv(f"Results_py//dataset_{dataset.replace('.csv', '')}model_LEAR_calibration_window{calibration_window}.csv")
forecast = pd.DataFrame(index=df_test.index[::24], columns=['h' + str(k) for k in range(24)])
if apply_adaptive_standardisation and not os.path.isfile(f"Results_py//dataset_{dataset.replace('.csv', '')}_model_LEAR_as_calibration_window_None.csv"):
model = LEAR_as(calibration_window=None)
# For loop over the recalibration dates
for date in forecast_dates: #tqdm(forecast_dates, desc='Calibration Window None'):
# For simulation purposes, we assume that the available data is
# the data up to current date where the prices of current date are not known
data_available = pd.concat([df_train, df_test.loc[:date + pd.Timedelta(hours=23), :]], axis=0)
# We set the real prices for current date to NaN in the dataframe of available data
data_available.loc[date:date + pd.Timedelta(hours=23), 'Price'] = np.NaN
# Recalibrating the model with the most up-to-date available data and making a prediction
# for the next day
scalers = df_scalers[(df_scalers.Date >= date) & (df_scalers.Date <= date + pd.Timedelta(hours=23))].scaler.to_numpy()
Yp = model.recalibrate_and_forecast_next_day(df=data_available, next_day_date=date,
calibration_window=calibration_window, scalers=scalers)
# Saving the current prediction
forecast.loc[date, :] = Yp
# Computing metrics up-to-current-date
mae = np.mean(MAE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values))
smape = np.mean(sMAPE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values)) * 100
# Pringint information
# print('\r\033[2K\033[1G', end='', flush=True) # TQDM compatibility
print('{} - sMAPE: {:.2f}% | MAE: {:.3f}'.format(str(date)[:10], smape, mae))
forecast.to_csv(f"Results_py//dataset_{dataset.replace('.csv', '')}_model_LEAR_as_calibration_window_None.csv")
forecast = pd.DataFrame(index=df_test.index[::24], columns=['h' + str(k) for k in range(24)])
else:
print("Combination already processed: ", apply_adaptive_standardisation, dataset, None)
if not apply_adaptive_standardisation and not os.path.isfile(f"Results_py//dataset_{dataset.replace('.csv', '')}model_LEAR_calibration_window_None.csv"):
model = LEAR(calibration_window=None)
# For loop over the recalibration dates
for date in forecast_dates: #tqdm(forecast_dates, desc='Calibration Window None'):
# For simulation purposes, we assume that the available data is
# the data up to current date where the prices of current date are not known
data_available = pd.concat([df_train, df_test.loc[:date + pd.Timedelta(hours=23), :]], axis=0)
# We set the real prices for current date to NaN in the dataframe of available data
data_available.loc[date:date + pd.Timedelta(hours=23), 'Price'] = np.NaN
# Recalibrating the model with the most up-to-date available data and making a prediction
# for the next day
Yp = model.recalibrate_and_forecast_next_day(df=data_available, next_day_date=date,
calibration_window=calibration_window)
# Saving the current prediction
forecast.loc[date, :] = Yp
# Computing metrics up-to-current-date
mae = np.mean(MAE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values))
smape = np.mean(sMAPE(forecast.loc[:date].values.squeeze(), real_values.loc[:date].values)) * 100
# Pringint information
print('{} - sMAPE: {:.2f}% | MAE: {:.3f}'.format(str(date)[:10], smape, mae))
forecast.to_csv(f"Results_py//dataset_{dataset.replace('.csv', '')}model_LEAR_calibration_window_None.csv")
forecast = pd.DataFrame(index=df_test.index[::24], columns=['h' + str(k) for k in range(24)])
else:
print("Combination already processed: ", apply_adaptive_standardisation, dataset, None)
print("Starting")
datasets = ["SP_2023.csv", "DE_2023.csv", "BE.csv", "FR.csv", "NP.csv"]
apply_adaptive_standardisation_list = [True, False]
calibration_windows_1 = [56, 84, 1092, 1456]
calibration_windows_2 = [56, 84, 364, 728]
combinations = []
for apply_adaptive_standardisation in apply_adaptive_standardisation_list:
for dataset in datasets:
if dataset in ["BE.csv", "FR.csv", "NP.csv"]:
calibration_windows = calibration_windows_1
elif dataset in ["DE_2023.csv", "SP_2023.csv"]:
calibration_windows = calibration_windows_2
for calibration_window in calibration_windows:
if apply_adaptive_standardisation:
file_name = f"dataset_{dataset.replace('.csv', '')}model_LEAR_as_calibration_window{calibration_window}.csv"
else:
file_name = f"dataset_{dataset.replace('.csv', '')}model_LEAR_calibration_window{calibration_window}.csv"
if not os.path.isfile("Results_py//" + file_name):
combinations.append([apply_adaptive_standardisation, dataset, calibration_window])
else:
print("Combination already processed: ", apply_adaptive_standardisation, dataset, calibration_window)
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
executor.map(process_combination, combinations)
# for combination in combinations:
# process_combination(combination)