-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
384 lines (309 loc) · 17.5 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 19 15:11:09 2017
@author: buckler
"""
import numpy as np
np.random.seed(888) # for experiment repeatability: this goes here, before importing keras (inside autoencoder modele) It works?
import autoencoder
import dataset_manupulation as dm
from os import path
import argparse
import os
import json
import time
import datetime
import utility as u
import librosa
import copy
import logging
import sys
from tensorflow.python.keras.models import load_model
# from tensorflow.python.keras.callbacks import Callback
from CustomCallback import GenerateWavCallback
###################################################PARSER ARGUMENT SECTION########################################
parser = argparse.ArgumentParser(description="AutoXSynthesis Autoencoder")
class eval_action(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super(eval_action, self).__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
values = eval(values)
setattr(namespace, self.dest, values)
# Global params
parser.add_argument("-cf", "--config-file", dest="config_filename", default=None)
parser.add_argument("-id", "--exp-index", dest="id", default=0, type=int)
parser.add_argument("-root", "--root-path",dest="root_dir", default=".", type=str)
# parser.add_argument("-results", "--results-path",dest="results_dir", default=".", type=str)
parser.add_argument("-log", "--logging", dest="log", default=False, action="store_true")
parser.add_argument("-sv", "--save-model", dest="save_model", default=False, action="store_true")
parser.add_argument("-lo", "--load-model", dest="load_model", default=False, action="store_true")
parser.add_argument("-sp", "--score-path", dest="scorePath", default="score")
parser.add_argument("-c", "--source", dest="source", default="Vox.npy")
parser.add_argument("-it", "--input-type", dest="input_type", default="stft")
parser.add_argument("-tt", "--target-type", dest="target_type", default="mfcc")
parser.add_argument("-hp", "--hybrid-phase", dest="hybrid_phase", default=False, action="store_true")
parser.add_argument("-ts", "--trainset", dest="trainset", default="train")
parser.add_argument("-jp", "--json-path", dest="jsonPath", default=None)
parser.add_argument("-ifs", "--instrument-family-strs", dest="instrument_family_strs", default='all', choices=["all", "bass","brass","flute","guitar","keyboard","mallet","organ","reed","string","synth_lead","vocal"])
parser.add_argument("--notes", dest="notes", default='all', action=eval_action)
parser.add_argument("-vmin", "--velocity-min", dest="velocityMin", default=0, type=int)
parser.add_argument("-vmax", "--velocity-max", dest="velocityMax", default=127, type=int)
parser.add_argument("-iss", "--instrument-source-strs", dest="instrument_source_strs", default='all', choices=["all","acoustic","electronic","synthetic"])
parser.add_argument("-mnof", "--max-number-of-file", dest="maxNumberOfFile", default=127, type=int)
parser.add_argument("--hop-size", dest="hopsize", default=2048)
parser.add_argument("--nfft", dest="nfft", default=2048)
parser.add_argument("--win-len", dest="win_len", default=2048)
parser.add_argument("-sr", "--sample-rate", dest="sample_rate", default=22050, type=int)
# CNN params
# parser.add_argument("-cln", "--conv-layers-numb", dest="conv_layer_numb", default=3, type=int)
# parser.add_argument("-is", "--cnn-input-shape", dest="cnn_input_shape", action=eval_action, default=[1, 129, 197])
# parser.add_argument("-kn", "--kernels-number", dest="kernel_number", action=eval_action, default=[16, 8, 8])
# parser.add_argument("-ks", "--kernel-shape", dest="kernel_shape", action=eval_action, default=[[3, 3], [3, 3], [3, 3]])
# parser.add_argument("-mp", "--max-pool-shape", dest="m_pool", action=eval_action, default=[[2, 2], [2, 2], [2, 2]])
# parser.add_argument("-s", "--strides", dest="strides", action=eval_action, default=[[1, 1], [1, 1], [1, 1]])
# parser.add_argument("-cwr", "--cnn-w-reg", dest="cnn_w_reg",
# default="None") # in autoencoder va usato con eval("funz(parametri)")
# parser.add_argument("-cbr", "--cnn-b-reg", dest="cnn_b_reg", default="None")
# parser.add_argument("-car", "--cnn-act-reg", dest="cnn_a_reg", default="None")
# parser.add_argument("-cwc", "--cnn-w-constr", dest="cnn_w_constr", default="None")
# parser.add_argument("-cbc", "--cnn-b-constr", dest="cnn_b_constr", default="None")
# parser.add_argument("-ac", "--cnn-conv-activation", dest="cnn_conv_activation", default="tanh", choices=["tanh"])
#dense
parser.add_argument("-is", "--dense-input-shape", dest="dense_input_shape", default=20, type=int)
parser.add_argument("-dln", "--dense-layers-numb", dest="dense_layer_numb", default=1, type=int)
parser.add_argument("-ds", "--dense-shapes", dest="dense_shapes", action=eval_action, default=[64])
parser.add_argument("-i", "--init", dest="init", default="glorot_uniform", choices=["glorot_uniform"])
parser.add_argument("-ad", "--dense-activation", dest="dense_activation", default="tanh", choices=["tanh","relu"])
parser.add_argument("-bm", "--border-mode", dest="border_mode", default="same", choices=["valid", "same"])
parser.add_argument("-dwr", "--d-w-reg", dest="d_w_reg",
default="None") # in autoencoder va usato con eval("funz(parametri)")
parser.add_argument("-dbr", "--d-b-reg", dest="d_b_reg", default="None")
parser.add_argument("-dar", "--d-act-reg", dest="d_a_reg", default="None")
parser.add_argument("-dwc", "--d-w-constr", dest="d_w_constr", default="None")
parser.add_argument("-dbc", "--d-b-constr", dest="d_b_constr", default="None")
parser.add_argument("-drp", "--dropout", dest="dropout", default=False, action="store_true")
parser.add_argument("-drpr", "--drop-rate", dest="drop_rate", default=0.5, type=float)
parser.add_argument("-nb", "--no-bias", dest="bias", default=True, action="store_false")
parser.add_argument("-p", "--pool-type", dest="pool_type", default="all", choices=["all", "only_end"])
parser.add_argument("-bn", "--batch-norm", dest="batch_norm", default=False, action="store_true")
#RNN
parser.add_argument("-rnn", "--RNN-type", dest="RNN_type", default=None, choices=["LSTM", "SimpleRNN","GRU"])
parser.add_argument("-rns", "--RNN-layer-shape", dest="RNN_layer_shape", default=None, type=int)
parser.add_argument("-cxt", "--frame-context", dest="frame_context", default=None, type=int)
# fit params
parser.add_argument("-e", "--epoch", dest="epoch", default=50, type=int)
parser.add_argument("-ns", "--shuffle", dest="shuffle", default="True", choices=["True","False","batch"])
parser.add_argument("-bsf", "--batch-size-fract", dest="batch_size_fract", default=None, type=float, help='batch size express in % of the trainset')
parser.add_argument("-bse", "--batch-size-effective", dest="batch_size_effective", default=None, type=int, help='batch size in number of sample')
parser.add_argument("-f", "--fit-net", dest="fit_net", default=False, action="store_true")
parser.add_argument("-o", "--optimizer", dest="optimizer", default="adadelta", choices=["adadelta", "adam", "sgd"])
parser.add_argument("-l", "--loss", dest="loss", default="mse", choices=["mse", "msle"])
parser.add_argument("-pt", "--patience", dest="patience", default=20, type=int)
parser.add_argument("-lr", "--learning-rate", dest="learning_rate", default=1.0, type=float)
parser.add_argument("-vl", "--validation-split", dest="val_split", default=0.0, type=float)
#mix reconstruction param
parser.add_argument("-aS", "--a-source", dest="aS", default=0.1, type=float)
parser.add_argument("-aP", "--a-pred", dest="aP", default=None, type=float)
parser.add_argument("-aM", "--a-mix", dest="aM", default=1, type=float)
parser.add_argument("-bS", "--b-source", dest="bS", default=0.1, type=float)
parser.add_argument("-bP", "--b-pred", dest="bP", default=None, type=float)
args = parser.parse_args()
if args.config_filename is not None:
with open(args.config_filename, "r") as f:
lines = f.readlines()
arguments = []
for line in lines:
arguments.extend(line.split("#")[0].split())
# First parse the arguments specified in the config file
args, unknown = parser.parse_known_args(args=arguments)
# Then append the command line arguments
# Command line arguments have the priority: an argument is specified both
# in the config file and in the command line, the latter is used
args = parser.parse_args(namespace=args)
# set mix reconstruction params
if args.shuffle == "True":
args.shuffle = True
elif args.shuffle == "False":
args.shuffle = False
if args.aP is None:
args.aP = 1 - args.aS
if args.bP is None:
args.bP = 1 - args.bS
if args.batch_size_effective is None and args.batch_size_fract is None:
print("specify batch-size in % or in absolute number")
raise ValueError('specify batch-size in % or in absolute number')
if args.batch_size_effective is not None and args.batch_size_fract is not None:
print("specify batch-size only in % or in absolute number")
raise ValueError('specify batch-size only in % or in absolute number')
#Feature Params
sample_rate = args.sample_rate
hopsize = int(args.hopsize)
nfft = int(args.nfft)
win_len = int(args.win_len)
###################################################END PARSER ARGUMENT SECTION########################################
###################################################INIT LOG########################################
# redirect all the stream of both standard.out and standard.err to the same logger
strID = str(args.id)
print("init log")
results_dir = os.path.join('experiments', strID)
root_dir = path.realpath(args.root_dir)
baseResultPath = os.path.join(root_dir, results_dir)
logFolder = os.path.join(baseResultPath, 'logs')
csvFolder = os.path.join(baseResultPath, 'csv')
wavDestPath = os.path.join(baseResultPath, 'reconstructedWav')
modelDestPath = os.path.join(baseResultPath, 'model')
argsFolder = os.path.join(baseResultPath, 'args')
predFolder = os.path.join(baseResultPath, 'preds')
u.makedir(logFolder)
u.makedir(csvFolder)
u.makedir(wavDestPath)
u.makedir(modelDestPath)
u.makedir(argsFolder)
u.makedir(predFolder)
nameFileLog = os.path.join(logFolder, 'process_' + strID + '.log')
nameFileLogCsv = os.path.join(csvFolder, 'process_' + strID + '.csv') # log in csv file the losses for further analysis
reconstructedFile = os.path.join(wavDestPath, 'process_' + strID + '.wav')
jsonargsFileName = os.path.join(argsFolder, 'process_' + strID + '.json')
jsonargs = json.dumps(args.__dict__, indent=4)
with open(os.path.join(jsonargsFileName), 'w') as file:
#file.write(json.dump(jsonargs, indent=4))
json.dump(jsonargs, file, indent=4)
if args.log:
u.makedir(logFolder) # crea la fold solo se non esiste
stdout_logger = logging.getLogger(strID)
sl = u.StreamToLogger(stdout_logger, nameFileLog, logging.INFO)
sys.stdout = sl # ovverride funcion
stderr_logger = logging.getLogger(strID)
sl = u.StreamToLogger(stderr_logger, nameFileLog, logging.ERROR)
sys.stderr = sl # ovverride funcion
###################################################END INIT LOG########################################
print("LOG OF PROCESS ID = " + strID)
ts0 = time.time()
st0 = datetime.datetime.fromtimestamp(ts0).strftime('%Y-%m-%d %H:%M:%S')
print("experiment start in date: " + st0)
trainStftPath = os.path.join(root_dir, 'dataset', args.trainset, args.input_type)
# LOAD DATASET
if 'nsynth' in args.trainset:
if args.notes is 'all':
notes = 'all'
else:
notes = dm.parsenotes(args.notes)
jsonPath = os.path.join(root_dir, 'dataset', args.jsonPath)
#with open(jsonPath, 'r', encoding='utf-8') as infile:
with open(jsonPath, 'r') as infile:
jsonFile = json.load(infile)
fileslist = dm.scanJson(jsonFile,
instrument_family_strs=args.instrument_family_strs,
notes=notes,
instrument_source_strs=args.instrument_source_strs,
velocityMin=args.velocityMin,
velocityMax=args.velocityMax,
maxNumberOfFile=args.maxNumberOfFile)
X_data = dm.load_DATASET(trainStftPath, fileslist)
else:
X_data = dm.load_DATASET(trainStftPath)
# X_data_reshaped, label = dm.reshape_set(X_data, net_type='dense')
X_data_reshaped = X_data[0][1].T
# X_data_reshaped = X_data_reshaped.T.view().T
#load source
sourceStftPath = os.path.join(root_dir, 'dataset', 'source', args.source, args.input_type)
source_stft = dm.load_DATASET(sourceStftPath)
# source = dm.reshape_set(source_stft, net_type='dense')
source_sig = source_stft[0][1].T
if args.hybrid_phase:
X_data_module = np.absolute(X_data_reshaped)
module_len = X_data_module.shape[1]
X_data_phase = np.angle(X_data_reshaped)
cos_phi_X_data = np.cos(X_data_phase)
sin_phi_X_data = np.sin(X_data_phase)
X_data_reshaped = np.hstack([X_data_module, cos_phi_X_data, sin_phi_X_data])
#X_data_reshaped = np.hstack([X_data_module, X_data_phase])
source_sig_module = np.absolute(source_sig)
source_sig_phase = np.angle(source_sig)
cos_source_sig = np.cos(source_sig_phase)
sin_source_sig = np.sin(source_sig_phase)
source_sig_input = np.concatenate([source_sig_module, cos_source_sig, sin_source_sig], axis=1)
if args.RNN_type is not None:
source_sig_input, _ = dm.create_context(source_sig_input, look_back=args.frame_context)
source_sig_module = source_sig_module[: - args.frame_context - 1, :]
source_sig_phase = source_sig_phase[: - args.frame_context - 1, :]
else:
X_data_reshaped.dtype = 'float32'
# calcolo il batch size
batch_size = int(len(X_data_reshaped) * args.batch_size_fract)
args.batch_size = batch_size
print("Training on " + str(X_data_reshaped.shape[0]) + " samples")
print("Batch size: " + str(batch_size) + " samples")
#model definition
if args.RNN_type is not None:
X_data, Y_data = dm.create_context(X_data_reshaped, look_back=args.frame_context)
args.dense_input_shape = X_data.shape[2]
else:
args.dense_input_shape = X_data_reshaped.shape[1]
X_data = X_data_reshaped
Y_data = X_data
modelName = 'model_' + strID + '.hd5'
if not args.load_model:
model = autoencoder.autoencoder_fall_detection(strID)
model.define_sequential_arch(params=args)
generate_wav_at_each_epoch = GenerateWavCallback(args, source_sig, predFolder, wavDestPath)
callback_list = [generate_wav_at_each_epoch]
#model copile
model.model_compile(optimizer=args.optimizer, loss=args.loss, learning_rate=args.learning_rate)
#model fit
m = model.model_fit(X_data, Y_data, validation_split=args.val_split, epochs=args.epoch,
batch_size=batch_size, shuffle=args.shuffle,
fit_net=args.fit_net, patience=args.patience,
nameFileLogCsv=nameFileLogCsv, callback_list=callback_list)
if args.save_model:
m.save(os.path.join(modelDestPath, modelName))
print("model saved at {0}".format(os.path.join(wavDestPath, modelName)))
else:
m = load_model(os.path.join(modelDestPath, modelName))
model = autoencoder.autoencoder_fall_detection(strID, model=m)
if args.hybrid_phase:
#TODO DO it separately for module, sin, cos
source_sig_module = np.absolute(source_sig)
source_sig_phase = np.angle(source_sig)
cos_source_sig = np.cos(source_sig_phase)
sin_source_sig = np.sin(source_sig_phase)
source_sig_input = np.concatenate([source_sig_module, cos_source_sig, sin_source_sig], axis=1)
#source_sig_input = np.hstack([source_sig_module, source_sig_phase])
if args.RNN_type is not None:
source_sig_input, _ = dm.create_context(source_sig_input, look_back=args.frame_context)
source_sig_module = source_sig_module[: - args.frame_context - 1, :]
source_sig_phase = source_sig_phase[: - args.frame_context - 1, :]
prediction = np.asarray(model.reconstruct_spectrogram(source_sig_input), order="C")
pred_name = "prediction_" + strID
np.save(os.path.join(predFolder, pred_name), prediction)
prediction_module = prediction[:, 0:module_len]
prediction_cos = prediction[:, module_len:(module_len*2)]
prediction_sin = prediction[:, (module_len*2):(module_len*3)]
prediction_phase = prediction_cos + 1j * prediction_sin
#prediction_phase = prediction[:, module_len:]
Mx = args.aS * source_sig_module + args.aP * prediction_module + args.aM * np.sqrt( source_sig_module * prediction_module)
Phix = args.bS * source_sig_phase + args.bP * prediction_phase
# Mx = prediction_module
# Phix = cos_source_sig + 1j * sin_source_sig
# Phix = prediction_phase
# prediction_complex = Mx * np.exp(1j*Phix)
prediction_complex = Mx * Phix
else:
source_sig.dtype = 'float32'
source_sig_input = source_sig
if args.RNN_type is not None:
source_sig_input, _ = dm.create_context(source_sig, look_back=args.frame_context)
prediction = np.asarray(model.reconstruct_spectrogram(source_sig_input), order="C")
prediction_complex = prediction.view()
prediction_complex.dtype = "complex64"
# prediction_complex = librosa.util.fix_length(prediction_complex, len(prediction_complex) + win_len)
S = librosa.core.istft(prediction_complex.T, hop_length=hopsize, win_length=win_len)
out_filename = "reconstruction_" + strID + ".wav"
librosa.output.write_wav(os.path.join(wavDestPath, out_filename), S, sample_rate)
ts1 = time.time()
tot_time = (ts1-ts0)/60
print("Experiment enlapsed " +str(tot_time) + " minutes.")
print("END.")