-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
57 lines (39 loc) · 1.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import random
from torch_geometric.datasets import TUDataset, GNNBenchmarkDataset
import torch, torchvision
import torch_geometric
from torch_geometric.loader import DataLoader, NeighborLoader
from torch_geometric.data import Data, Batch, Dataset
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score
class ListDataset(Dataset):
def __init__(self, data, transform=None, pre_transform=None):
super().__init__(None, transform, pre_transform)
self.data = data
def len(self):
return len(self.data)
def get(self, idx):
return self.data[idx]
def train_step(model, loader, optimizer, device):
model.train()
for data in loader:
optimizer.zero_grad()
data = data.to(device)
lgits = model(data)
loss = F.cross_entropy(lgits, data.y)
loss.backward()
optimizer.step()
return loss
def test_step(model, loader, device):
model.eval()
labels = []
preds = torch.empty(0)
for data in loader:
data = data.to(device)
with torch.no_grad():
lgits = model(data)
pred = torch.argmax(lgits, dim=1).cpu()
preds = torch.cat((preds, pred), dim=0)
labels += data.y.cpu().tolist()
return labels, preds.tolist()