-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
371 lines (305 loc) · 17.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# Copyright (c) 2020-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import copy
import numpy as np
import torch
import torch.nn.functional as F
from data_loader import load_data
from model import GCN, GCN_C, GCN_DAE
from utils import accuracy, get_random_mask, get_random_mask_ogb, nearest_neighbors, normalize
EOS = 1e-10
class Experiment:
def __init__(self):
super(Experiment, self).__init__()
def get_loss_learnable_adj(self, model, mask, features, labels, Adj):
logits = model(features, Adj)
logp = F.log_softmax(logits, 1)
loss = F.nll_loss(logp[mask], labels[mask], reduction='mean')
accu = accuracy(logp[mask], labels[mask])
return loss, accu
def get_loss_fixed_adj(self, model, mask, features, labels):
logits = model(features)
logp = F.log_softmax(logits, 1)
loss = F.nll_loss(logp[mask], labels[mask], reduction='mean')
accu = accuracy(logp[mask], labels[mask])
return loss, accu
def get_loss_adj(self, model, features, feat_ind):
labels = features[:, feat_ind].float()
new_features = copy.deepcopy(features)
new_features[:, feat_ind] = torch.zeros(new_features[:, feat_ind].shape)
logits = model(new_features)
loss = F.binary_cross_entropy_with_logits(logits[:, feat_ind], labels, weight=labels + 1)
return loss
def get_loss_masked_features(self, model, features, mask, ogb, noise, loss_t):
if ogb:
if noise == 'mask':
masked_features = features * (1 - mask)
elif noise == "normal":
noise = torch.normal(0.0, 1.0, size=features.shape).cuda()
masked_features = features + (noise * mask)
logits, Adj = model(features, masked_features)
indices = mask > 0
if loss_t == 'bce':
features_sign = torch.sign(features).cuda() * 0.5 + 0.5
loss = F.binary_cross_entropy_with_logits(logits[indices], features_sign[indices], reduction='mean')
elif loss_t == 'mse':
loss = F.mse_loss(logits[indices], features[indices], reduction='mean')
else:
masked_features = features * (1 - mask)
logits, Adj = model(features, masked_features)
indices = mask > 0
loss = F.binary_cross_entropy_with_logits(logits[indices], features[indices], reduction='mean')
return loss, Adj
def half_val_as_train(self, val_mask, train_mask):
val_size = np.count_nonzero(val_mask)
counter = 0
for i in range(len(val_mask)):
if val_mask[i] and counter < val_size / 2:
counter += 1
val_mask[i] = False
train_mask[i] = True
return val_mask, train_mask
def train_classification_gcn(self, Adj, features, nfeats, labels, nclasses, train_mask, val_mask, test_mask, args):
model = GCN(in_channels=nfeats, hidden_channels=args.hidden, out_channels=nclasses, num_layers=args.nlayers,
dropout=args.dropout2, dropout_adj=args.dropout_adj2, Adj=Adj, sparse=args.sparse)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.w_decay)
bad_counter = 0
best_val = 0
best_model = None
best_loss = 0
best_train_loss = 0
if torch.cuda.is_available():
model = model.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
features = features.cuda()
labels = labels.cuda()
for epoch in range(1, args.epochs + 1):
model.train()
loss, accu = self.get_loss_fixed_adj(model, train_mask, features, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 10 == 0:
model.eval()
val_loss, accu = self.get_loss_fixed_adj(model, val_mask, features, labels)
if accu > best_val:
bad_counter = 0
best_val = accu
best_model = copy.deepcopy(model)
best_loss = val_loss
best_train_loss = loss
else:
bad_counter += 1
if bad_counter >= args.patience:
break
print("Val Loss {:.4f}, Val Accuracy {:.4f}".format(best_loss, best_val))
best_model.eval()
test_loss, test_accu = self.get_loss_fixed_adj(best_model, test_mask, features, labels)
print("Test Loss {:.4f}, Test Accuracy {:.4f}".format(test_loss, test_accu))
return best_val, test_accu, best_model
def train_knn_gcn(self, args):
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_data(args)
val_accuracies = []
test_accuracies = []
Adj = torch.from_numpy(nearest_neighbors(features, args.k, args.knn_metric)).cuda()
Adj = normalize(Adj, args.normalization, args.sparse)
if torch.cuda.is_available():
features = features.cuda()
if args.half_val_as_train:
val_mask, train_mask = self.half_val_as_train(val_mask, train_mask)
for trial in range(args.ntrials):
val_accu, test_accu, best_model = self.train_classification_gcn(Adj, features, nfeats, labels, nclasses,
train_mask, val_mask, test_mask, args)
val_accuracies.append(val_accu.item())
test_accuracies.append(test_accu.item())
self.print_results(val_accuracies, test_accuracies)
def train_two_steps(self, args):
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_data(args)
if args.half_val_as_train:
val_mask, train_mask = self.half_val_as_train(val_mask, train_mask)
test_accuracies = []
validation_accuracies = []
for trial in range(args.ntrials):
model = GCN_DAE(nlayers=args.nlayers_adj, in_dim=nfeats, hidden_dim=args.hidden_adj, nclasses=nfeats,
dropout=args.dropout1, dropout_adj=args.dropout_adj1,
features=features.cpu(), k=args.k, knn_metric=args.knn_metric, i_=args.i,
non_linearity=args.non_linearity, normalization=args.normalization, mlp_h=args.mlp_h,
mlp_epochs=args.mlp_epochs, gen_mode=args.gen_mode, sparse=args.sparse,
mlp_act=args.mlp_act)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr_adj, weight_decay=args.w_decay_adj)
if torch.cuda.is_available():
model = model.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
features = features.cuda()
labels = labels.cuda()
best_val = 0
best_val_test = 0
for epoch in range(1, args.epochs_adj + 1):
model.train()
if args.dataset.startswith('ogb') or args.dataset in ["wine", "digits", "breast_cancer"]:
mask = get_random_mask_ogb(features, args.ratio).cuda()
ogb = True
elif args.dataset == "20news10":
mask = get_random_mask(features, args.ratio, args.nr).cuda()
ogb = True
else:
mask = get_random_mask(features, args.ratio, args.nr).cuda()
ogb = False
loss, Adj = self.get_loss_masked_features(model, features, mask, ogb, args.noise, args.loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print("Epoch {:05d} | Train Loss {:.4f}".format(epoch, loss.item()))
if epoch % 1 == 0:
model.eval()
accu, test_accu, classification_model = self.train_classification_gcn(Adj.detach(), features,
nfeats, labels, nclasses,
train_mask, val_mask,
test_mask, args)
if accu > best_val:
best_val = accu
best_val_test = test_accu
validation_accuracies.append(best_val.item())
test_accuracies.append(best_val_test.item())
self.print_results(validation_accuracies, test_accuracies)
def train_end_to_end(self, args):
features, nfeats, labels, nclasses, train_mask, val_mask, test_mask = load_data(args)
if args.half_val_as_train:
val_mask, train_mask = self.half_val_as_train(val_mask, train_mask)
test_accu = []
validation_accu = []
added_edges_list = []
removed_edges_list = []
for trial in range(args.ntrials):
model1 = GCN_DAE(nlayers=args.nlayers_adj, in_dim=nfeats, hidden_dim=args.hidden_adj, nclasses=nfeats,
dropout=args.dropout1, dropout_adj=args.dropout_adj1,
features=features.cpu(), k=args.k, knn_metric=args.knn_metric, i_=args.i,
non_linearity=args.non_linearity, normalization=args.normalization, mlp_h=args.mlp_h,
mlp_epochs=args.mlp_epochs, gen_mode=args.gen_mode, sparse=args.sparse,
mlp_act=args.mlp_act)
model2 = GCN_C(in_channels=nfeats, hidden_channels=args.hidden, out_channels=nclasses,
num_layers=args.nlayers, dropout=args.dropout2, dropout_adj=args.dropout_adj2,
sparse=args.sparse)
optimizer1 = torch.optim.Adam(model1.parameters(), lr=args.lr_adj, weight_decay=args.w_decay_adj)
optimizer2 = torch.optim.Adam(model2.parameters(), lr=args.lr, weight_decay=args.w_decay)
if torch.cuda.is_available():
model1 = model1.cuda()
model2 = model2.cuda()
train_mask = train_mask.cuda()
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
features = features.cuda()
labels = labels.cuda()
best_val_accu = 0.0
best_model2 = None
best_Adj = None
for epoch in range(1, args.epochs_adj + 1):
model1.train()
model2.train()
optimizer1.zero_grad()
optimizer2.zero_grad()
if args.dataset.startswith('ogb') or args.dataset in ["wine", "digits", "breast_cancer"]:
mask = get_random_mask_ogb(features, args.ratio).cuda()
ogb = True
elif args.dataset == "20news10":
mask = get_random_mask(features, args.ratio, args.nr).cuda()
ogb = True
else:
mask = get_random_mask(features, args.ratio, args.nr).cuda()
ogb = False
if epoch < args.epochs_adj // args.epoch_d:
model2.eval()
loss1, Adj = self.get_loss_masked_features(model1, features, mask, ogb, args.noise, args.loss)
loss2 = torch.tensor(0).cuda()
else:
loss1, Adj = self.get_loss_masked_features(model1, features, mask, ogb, args.noise, args.loss)
loss2, accu = self.get_loss_learnable_adj(model2, train_mask, features, labels, Adj)
loss = loss1 * args.lambda_ + loss2
loss.backward()
optimizer1.step()
optimizer2.step()
if epoch % 100 == 0:
print("Epoch {:05d} | Train Loss {:.4f}, {:.4f}".format(epoch, loss1.item() * args.lambda_,
loss2.item()))
if epoch >= args.epochs_adj // args.epoch_d and epoch % 1 == 0:
with torch.no_grad():
model1.eval()
model2.eval()
val_loss, val_accu = self.get_loss_learnable_adj(model2, val_mask, features, labels, Adj)
if val_accu > best_val_accu:
best_val_accu = val_accu
print("Val Loss {:.4f}, Val Accuracy {:.4f}".format(val_loss, val_accu))
test_loss_, test_accu_ = self.get_loss_learnable_adj(model2, test_mask, features, labels,
Adj)
print("Test Loss {:.4f}, Test Accuracy {:.4f}".format(test_loss_, test_accu_))
validation_accu.append(best_val_accu.item())
model1.eval()
model2.eval()
with torch.no_grad():
print("Test Loss {:.4f}, test Accuracy {:.4f}".format(test_loss_, test_accu_))
test_accu.append(test_accu_.item())
self.print_results(validation_accu, test_accu)
def print_results(self, validation_accu, test_accu):
print(test_accu)
print("std of test accuracy", np.std(test_accu))
print("average of test accuracy", np.mean(test_accu))
print(validation_accu)
print("std of val accuracy", np.std(validation_accu))
print("average of val accuracy", np.mean(validation_accu))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-epochs', type=int, default=200, help='Number of epochs to train.')
parser.add_argument('-epochs_adj', type=int, default=2000, help='Number of epochs to learn the adjacency.')
parser.add_argument('-lr', type=float, default=0.001, help='Initial learning rate.')
parser.add_argument('-lr_adj', type=float, default=0.01, help='Initial learning rate.')
parser.add_argument('-w_decay', type=float, default=0.0005, help='Weight decay (L2 loss on parameters).')
parser.add_argument('-w_decay_adj', type=float, default=0.0, help='Weight decay (L2 loss on parameters).')
parser.add_argument('-hidden', type=int, default=32, help='Number of hidden units.')
parser.add_argument('-hidden_adj', type=int, default=512, help='Number of hidden units.')
parser.add_argument('-dropout1', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
parser.add_argument('-dropout2', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
parser.add_argument('-dropout_adj1', type=float, default=0.25, help='Dropout rate (1 - keep probability).')
parser.add_argument('-dropout_adj2', type=float, default=0.25, help='Dropout rate (1 - keep probability).')
parser.add_argument('-dataset', type=str, default='cora', help='See choices',
choices=['cora', 'citeseer', 'pubmed', 'ogbn-arxiv', 'ogbn-proteins'])
parser.add_argument('-nlayers', type=int, default=2, help='#layers')
parser.add_argument('-nlayers_adj', type=int, default=2, help='#layers')
parser.add_argument('-patience', type=int, default=10, help='Patience for early stopping')
parser.add_argument('-ntrials', type=int, default=1, help='Number of trials')
parser.add_argument('-k', type=int, default=20, help='k for initializing with knn')
parser.add_argument('-half_val_as_train', type=int, default=0, help='use first half of validation for training')
parser.add_argument('-ratio', type=int, default=20, help='ratio of ones to select for each mask')
parser.add_argument('-epoch_d', type=float, default=5,
help='epochs_adj / epoch_d of the epochs will be used for training only with DAE.')
parser.add_argument('-lambda_', type=float, default=0.1, help='ratio of ones to take')
parser.add_argument('-nr', type=int, default=5, help='ratio of zeros to ones')
parser.add_argument('-knn_metric', type=str, default='cosine', help='See choices', choices=['cosine', 'minkowski'])
parser.add_argument('-model', type=str, default="end2end", help='See choices',
choices=['end2end', 'knn_gcn', '2step'])
parser.add_argument('-i', type=int, default=6)
parser.add_argument('-non_linearity', type=str, default='elu')
parser.add_argument('-mlp_act', type=str, default='relu', choices=["relu", "tanh"])
parser.add_argument('-normalization', type=str, default='sym')
parser.add_argument('-mlp_h', type=int, default=50)
parser.add_argument('-mlp_epochs', type=int, default=100)
parser.add_argument('-gen_mode', type=int, default=0)
parser.add_argument('-sparse', type=int, default=0)
parser.add_argument('-noise', type=str, default="mask", choices=['mask', 'normal'])
parser.add_argument('-loss', type=str, default="mse", choices=['mse', 'bce'])
args = parser.parse_args()
experiment = Experiment()
if args.model == "end2end":
experiment.train_end_to_end(args)
elif args.model == "2step":
experiment.train_two_steps(args)
elif args.model == "knn_gcn":
experiment.train_knn_gcn(args)