-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_utils.py
423 lines (385 loc) · 17.1 KB
/
my_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import Resize, ToPILImage, ToTensor
import torchvision.transforms.functional as vis_F
from torchvision.transforms.functional import InterpolationMode
import numpy as np
import PIL.Image as pil
import copy
import cv2
import mmcv
from mmdet3d.core import LiDARInstance3DBoxes
from mmdet3d.core.utils import visualize_camera, visualize_lidar
from scipy.special import softmax
from patch_converter import Patch_converter
from my_config import My_config
import math
def sample_train_val(scenes, object_ids, val_ratio=0.2):
N = len(scenes)
scenes = np.array(scenes)
val_n = int(math.ceil(N * val_ratio))
rs = np.random.RandomState(17)
rand_idxs = list(np.arange(N))
rs.shuffle(rand_idxs)
# val set
val_scenes = scenes[rand_idxs[:val_n]]
val_sorted_idx = np.argsort(val_scenes)
val_list = val_scenes[val_sorted_idx].tolist()
# train set
train_scenes = scenes[rand_idxs[val_n:]]
train_sorted_idx = np.argsort(train_scenes)
train_list = train_scenes[train_sorted_idx].tolist()
# objects
if object_ids is None:
train_objs, val_objs = None, None
else:
assert len(scenes) == len(object_ids)
# object_ids = [ids.append(-1) for ids in object_ids]
object_ids = np.array(object_ids)
val_objs = object_ids[rand_idxs[:val_n]]
val_objs = val_objs[val_sorted_idx].tolist()
train_objs = object_ids[rand_idxs[val_n:]]
train_objs = train_objs[train_sorted_idx].tolist()
return train_list, train_objs, val_list, val_objs
def run_from_ipython():
try:
__IPYTHON__
return True
except NameError:
return False
def scale2PILImage(img, img_norm_cfg):
img_tensor = img.clone().detach()
for i in range(img_tensor.shape[0]):
img_tensor[i] *= img_norm_cfg['std'][i]
img_tensor[i] += img_norm_cfg['mean'][i]
img_tensor = torch.clamp(img_tensor, 0, 1)
return ToPILImage()(img_tensor)
def vis_patch(
patch: torch.Tensor,
mask: torch.Tensor,
ori_img: np.ndarray, # channel order: BGR
target='original'):
patch_converter = Patch_converter()
patch, mask = patch_converter.convert_patch(patch, mask, target)
# convert patch channel from RGB to BGR and shape from (3,H,W) to (H,W,3)
patch, mask = patch[[2, 1, 0]].permute((1, 2, 0)).numpy(), mask.permute((1, 2, 0)).numpy()
patch *= 255
patch = patch.astype(np.uint8)
# mask = mask.astype(np.uint8)
adv_image = ori_img * (1-mask) + patch * mask
return adv_image.astype(np.uint8)
def numpy2tensor(x):
x_tensor = torch.from_numpy(x).unsqueeze(0).cuda()
return x_tensor
def select_objs(scores, obj_gt_indices, object_ids):
assert obj_gt_indices is not None
selected_idx = []
for i in range(len(obj_gt_indices)):
if obj_gt_indices[i] in object_ids:
selected_idx.append(i)
if len(selected_idx) == 0:
print("You have succeed! No matching bboxes found.")
else:
scores = scores[selected_idx]
return scores
def save_pic(tensor, i, log_dir=''):
"""
tensor: image of size (C, H, W)
"""
unloader = ToPILImage() # tensor to PIL image
image = tensor.clone().cpu()
# image = image.squeeze(0)
image = unloader(image)
if log_dir != '':
file_path = os.path.join(log_dir, "{}.png".format(i))
else:
file_path = "{}.png".format(i)
image.save(file_path, "PNG")
def get_input_data(model_name, dataloader, timestamp: int, data_iter=None):
"""
timestamp == -1 means next input data
"""
data_iter = iter(enumerate(dataloader)) if data_iter is None else data_iter
def next_data(data_iter, dataloader):
try:
sample_idx, input_data = next(data_iter)
except StopIteration:
if timestamp == -1:
input_data, data_iter, sample_idx = None, None, -1
else:
data_iter = iter(enumerate(dataloader))
sample_idx, input_data = next(data_iter)
# print("loaded sample index: ", sample_idx)
return input_data, data_iter, sample_idx
input_data, data_iter, sample_idx = next_data(data_iter, dataloader)
if model_name == 'bevfusion':
# while timestamp != -1 and input_data['metas'].data[0][0]['timestamp'] != timestamp:
while timestamp != -1 and input_data['metas'].data[0][0]['pts_filename'][-24:-8] != timestamp:
input_data, data_iter, sample_idx = next_data(data_iter, dataloader)
elif model_name == 'deepint' or model_name == 'bevfusion2' or model_name == 'bevformer' \
or model_name == 'transfusion' or model_name == 'autoalign':
while timestamp != -1 and int(input_data['img_metas'][0].data[0][0]['pts_filename'][-24:-8]) != timestamp:
input_data, data_iter, sample_idx = next_data(data_iter, dataloader)
elif model_name == 'uvtr':
while timestamp != -1 and int(input_data['img_metas'].data[0][0]['pts_filename'][-24:-8]) != timestamp:
input_data, data_iter, sample_idx = next_data(data_iter, dataloader)
else:
raise RuntimeError("No metas info available.")
return input_data, data_iter, sample_idx
def norm_img(patch: torch.Tensor, img_norm_cfg):
if img_norm_cfg['mean'][0] > 1:
patch.data.clamp_(0, 255)
else:
patch.data.clamp_(0, 1)
patch_norm = patch.clone()
if len(patch.shape) == 4:
for i in range(patch.shape[1]):
patch_norm[:, i, ...] -= img_norm_cfg['mean'][i]
patch_norm[:, i, ...] /= img_norm_cfg['std'][i]
else:
for i in range(patch.shape[0]):
patch_norm[i] -= img_norm_cfg['mean'][i]
patch_norm[i] /= img_norm_cfg['std'][i]
return patch_norm
def rev_norm(img_norm: torch.Tensor, img_norm_cfg):
img = img_norm.clone()
for i in range(img.shape[0]):
img[i] *= img_norm_cfg['std'][i]
img[i] += img_norm_cfg['mean'][i]
if img_norm_cfg['mean'][0] > 1:
img.data.clamp_(0, 255)
else:
img.data.clamp_(0, 1)
return img
def create_pseudo_area(patch_area):
# pseudo area is in the bevfusion2 area_ref
H_phy, W_phy, alpha, dy, dx = patch_area
H_img, W_img = 448, 800
assert H_phy <= H_img // My_config.proj_scale and W_phy <= W_img // My_config.proj_scale
scale = My_config.proj_scale
if np.sum(patch_area[2:5]) == -3:
pseudo_area = ((H_img - H_phy * scale) // 2, (W_img - W_phy * scale) // 2, H_phy * scale, W_phy * scale)
else:
pseudo_area = (H_img - H_phy * scale - 1, (W_img - W_phy * scale) // 2, H_phy * scale, W_phy * scale)
pseudo_area = tuple([int(v) for v in pseudo_area])
return pseudo_area
def get_phy_patch(model_relate, patch, mask, pseudo_area, patch_area, deterministic, rs=None):
H_phy, W_phy, alpha, dy, dx = patch_area
metas = get_meta_from_inputdata(model_relate['model_name'], model_relate['input_data'])
k = model_relate['k']
transform = metas["lidar2image"][k] if "lidar2image" in metas.keys() else metas["lidar2img"][k]
if np.sum(patch_area[2:5]) == -3: # patch on the target vehicle
assert isinstance(model_relate['object_ids'], list), 'the target object ids should be list'
target_idx = model_relate['object_ids'][0]
model_name = model_relate['model_name']
input_data = model_relate['input_data']
if model_name == "bevfusion" or model_name == 'uvtr':
bboxes = input_data["gt_bboxes_3d"].data[0][0].tensor.numpy()
elif model_name == "deepint" or model_name == 'bevfusion2' or model_name == 'bevformer'\
or model_name == 'transfusion' or model_name == 'autoalign':
bboxes = input_data["gt_bboxes_3d"][0].data[0][0].tensor.numpy()
if model_name == 'bevfusion':
bboxes[..., 2] -= bboxes[..., 5] / 2
bboxes_corners = LiDARInstance3DBoxes(bboxes, box_dim=9).corners.numpy()
obj_corners = bboxes_corners[target_idx]
patch_trans, mask_trans = model_relate['pc_3d'].compose_targeted_patch(patch, mask, pseudo_area,
obj_corners, transform, W_phy, H_phy,
deterministic=deterministic, rs=rs)
else: # patch on the ground
patch_trans, mask_trans = model_relate['pc_3d'].compose_3d_patch(patch,
mask, pseudo_area, transform, W_phy, H_phy, dx=dx, dy=dy,
alpha=alpha, deterministic=deterministic, rs=rs)
return patch_trans, mask_trans
class TVLoss(nn.Module):
def __init__(self):
super(TVLoss, self).__init__()
self.ky = np.array([
[[0, 0, 0],[0, 1, 0],[0,-1, 0]],
[[0, 0, 0],[0, 1, 0],[0,-1, 0]],
[[0, 0, 0],[0, 1, 0],[0,-1, 0]]
])
self.kx = np.array([
[[0, 0, 0],[0, 1,-1],[0, 0, 0]],
[[0, 0, 0],[0, 1,-1],[0, 0, 0]],
[[0, 0, 0],[0, 1,-1],[0, 0, 0]]
])
self.conv_x = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_x.weight = nn.Parameter(torch.from_numpy(self.kx).float().unsqueeze(0),
requires_grad=False)
self.conv_y = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)
self.conv_y.weight = nn.Parameter(torch.from_numpy(self.ky).float().unsqueeze(0),
requires_grad=False)
def forward(self, input):
if len(input.shape) == 3:
input = input.unsqueeze(0)
height, width = input.size()[2:4]
gx = self.conv_x(input)
gy = self.conv_y(input)
# gy = gy.squeeze(0).squeeze(0)
# cv2.imwrite('gy.png', (gy*255.0).to('cpu').numpy().astype('uint8'))
# exit()
self.loss = torch.sum(gx**2 + gy**2)/2.0
return self.loss
def get_meta_from_inputdata(model_name, input_data):
if model_name == 'bevfusion':
metas = input_data["metas"].data[0][0]
elif model_name == 'deepint' or model_name == 'bevfusion2' or model_name == 'bevformer'\
or model_name == 'transfusion'or model_name == 'autoalign':
metas = input_data['img_metas'][0].data[0][0]
elif model_name == 'uvtr':
metas = input_data['img_metas'].data[0][0]
else:
raise NotImplementedError()
return metas
def visulize_atk(model_relate, input_data, patch, mask, mode, box_notes=True, score_notes=True):
"""
model_relate: dict include 'model', 'model_name', 'cfg', 'img_norm_cfg'
patch and mask: only used for visualize purpose
input_data: the input_data used to feed the model for prediction
mode: 'pred' or 'gt'
"""
target_model = model_relate['model']
model_name = model_relate['model_name']
cfg = model_relate['cfg']
img_norm_cfg = model_relate['img_norm_cfg']
k = model_relate['k']
if mode == 'pred':
target_model.eval()
with torch.inference_mode():
outputs = target_model(return_loss=False, rescale=True, **input_data)
if model_name == 'bevfusion':
object_classes = cfg.object_classes
else:
object_classes = cfg.class_names
metas = get_meta_from_inputdata(model_name, input_data)
if mode == 'pred':
if model_name == 'deepint' or model_name == 'uvtr' or model_name == 'bevformer'\
or model_name == 'bevfusion2' or model_name == 'transfusion' or model_name == 'autoalign':
result_dict = outputs[0]['pts_bbox']
elif model_name == 'bevfusion':
result_dict = outputs[0]
bboxes = result_dict["boxes_3d"].tensor.numpy()
scores = result_dict["scores_3d"].numpy()
labels = result_dict["labels_3d"].numpy()
box_idxs = result_dict["obj_gt_indices"].int().numpy() \
if "obj_gt_indices" in result_dict.keys() and result_dict["obj_gt_indices"] is not None else None
indices = scores >= My_config.score_thres
indices_valid = np.array([box_id != -1 for box_id in box_idxs])
bboxes = bboxes[indices & indices_valid]
scores = scores[indices & indices_valid]
labels = labels[indices & indices_valid]
box_idxs = box_idxs[indices & indices_valid] if box_idxs is not None else None
else:
if model_name == "bevfusion" or model_name == 'uvtr':
bboxes = input_data["gt_bboxes_3d"].data[0][0].tensor.numpy()
labels = input_data["gt_labels_3d"].data[0][0].numpy()
elif model_name == "deepint" or model_name == 'bevfusion2' or model_name == 'bevformer'\
or model_name == 'transfusion' or model_name == 'autoalign':
bboxes = input_data["gt_bboxes_3d"][0].data[0][0].tensor.numpy()
labels = input_data["gt_labels_3d"][0].data[0][0].numpy()
box_idxs = np.arange(len(labels))
scores = np.ones_like(labels)
if model_name == 'bevfusion':
bboxes[..., 2] -= bboxes[..., 5] / 2
bboxes = LiDARInstance3DBoxes(bboxes, box_dim=9)
if "img" in input_data:
# k = 1 if model_name == 'bevfusion2' or model_name == 'transfusion' else 0
image_path = metas["filename"][k]
if model_name == 'bevfusion' or model_name == 'bevfusion2' or model_name == 'bevformer'\
or model_name == 'transfusion' or model_name == 'autoalign':
image = mmcv.imread(image_path) # BGR
if mode =='pred' and patch is not None:
image = vis_patch(patch, mask, image, target='original')
elif model_name == 'deepint':
image = rev_norm(input_data['img'][0].data[0][0, k, ...],img_norm_cfg)
image = image[[2, 1, 0]].permute((1,2,0)).detach().numpy() * 255
image = image.astype(np.uint8)
if mode =='pred' and patch is not None:
image = vis_patch(patch, mask, image, target=model_name)
elif model_name == 'uvtr':
image = rev_norm(input_data['img'].data[0][0, k, ...],img_norm_cfg)
image = image.permute((1,2,0)).detach().numpy()
image = image.astype(np.uint8)
if mode =='pred' and patch is not None:
image = vis_patch(patch, mask, image, target=model_name)
annotated_img = visualize_camera(
None,
image,
bboxes=bboxes,
labels=labels,
transform=metas["lidar2image"][k] if "lidar2image" in metas.keys() else metas["lidar2img"][k],
classes=object_classes,
thickness=2,
box_idxs=box_idxs if box_notes else None,
scores=scores if score_notes else None
)
annotated_img = torch.from_numpy(annotated_img).permute((2, 0, 1))[[2, 1, 0]]
if "points" in input_data:
if model_name == 'bevfusion' or model_name == 'uvtr':
lidar = input_data["points"].data[0][0].numpy()
elif model_name == 'deepint' or model_name == 'bevfusion2'\
or model_name == 'transfusion' or model_name == 'autoalign':
lidar = input_data["points"][0].data[0][0].numpy()
annotated_lidar_img = visualize_lidar(
None,
lidar,
bboxes=bboxes,
labels=labels,
xlim=[cfg.point_cloud_range[d] for d in [0, 3]],
ylim=[cfg.point_cloud_range[d] for d in [1, 4]],
classes=object_classes,
)
annotated_lidar_img = torch.from_numpy(annotated_lidar_img).permute((2, 0, 1))[:3]
annotated_lidar_img = vis_F.resize(annotated_lidar_img[:3], (1080, 1080))[[2, 1, 0]]
else:
annotated_lidar_img = None
return annotated_img, annotated_lidar_img
def fromTensor2Heatmap(gray_tensor, max_val=1):
assert gray_tensor.shape[0] == 1
gray_map = gray_tensor.clone().detach().cpu().numpy().transpose(1,2,0)
gray_map = 255 * (np.clip(gray_map, 0, max_val) / max_val)
gray_map = np.uint8(gray_map)
gray_map = cv2.cvtColor(gray_map, cv2.COLOR_BGR2RGB)
heatmap = cv2.applyColorMap(gray_map, cv2.COLORMAP_JET)
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
heatmap = ToTensor()(pil.fromarray(heatmap))
return heatmap
def extract_patch(patch_img: torch.Tensor, paint_mask:torch.Tensor):
_, H, W = patch_img.shape
paint_mask_2D = paint_mask.squeeze()
last_row = False
last_col = False
h_range = []
w_range = []
for i in range(H):
has_one = False
for j in range(W):
if abs(paint_mask_2D[i, j] - 1) < 0.5:
has_one = True
if not last_row:
h_range.append(i)
last_row = True
break
if not has_one and last_row:
h_range.append(i)
last_row = False
if len(h_range) == 1:
h_range.append(H)
for j in range(W):
has_one = False
for i in range(H):
if abs(paint_mask_2D[i, j] - 1) < 0.5:
has_one = True
if not last_col:
w_range.append(j)
last_col = True
break
if not has_one and last_col:
w_range.append(j)
last_col = False
if len(w_range) == 1:
w_range.append(W)
return patch_img[:, h_range[0] : h_range[1], w_range[0] : w_range[1]]