-
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathprefilter.py
45 lines (34 loc) · 1.34 KB
/
prefilter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#######################################################################
# Copyright (c) 2019-present, Blosc Development Team <[email protected]>
# All rights reserved.
#
# This source code is licensed under a BSD-style license (found in the
# LICENSE file in the root directory of this source tree)
#######################################################################
# Example of prefiltering data before compression
import numpy as np
import blosc2
nchunks = 3
input_dtype = np.dtype(np.int32)
output_dtype = np.dtype(np.float32)
# Set the compression and decompression parameters
cparams = blosc2.CParams(typesize=4, nthreads=1)
dparams = blosc2.DParams(nthreads=4)
storage = blosc2.Storage(mode="a")
# Create empty schunk
schunk = blosc2.SChunk(
chunksize=200 * 1000 * input_dtype.itemsize, cparams=cparams, dparams=dparams, storage=storage
)
# Set prefilter with decorator
@schunk.prefilter(input_dtype, output_dtype)
def prefilter(input, output, offset):
output[:] = input - np.pi
# Append data
data = np.arange(200 * 1000 * nchunks, dtype=input_dtype)
schunk[: 200 * 1000 * nchunks] = data
# Check prefilter is applied correctly
out2 = np.empty(200 * 1000 * nchunks, dtype=output_dtype)
schunk.get_slice(0, 200 * 1000 * nchunks, out=out2)
res = np.empty(data.shape, dtype=output_dtype)
prefilter(data, res, None)
assert np.allclose(res, out2)