-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathDKT_regression.py
129 lines (102 loc) · 4.79 KB
/
DKT_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
## Original packages
import backbone
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import math
import torch.nn.functional as F
## Our packages
import gpytorch
from time import gmtime, strftime
import random
from statistics import mean
from data.qmul_loader import get_batch, train_people, test_people
from configs import kernel_type
class DKT(nn.Module):
def __init__(self, backbone):
super(DKT, self).__init__()
## GP parameters
self.feature_extractor = backbone
self.get_model_likelihood_mll() #Init model, likelihood, and mll
def get_model_likelihood_mll(self, train_x=None, train_y=None):
if(train_x is None): train_x=torch.ones(19, 2916).cuda()
if(train_y is None): train_y=torch.ones(19).cuda()
likelihood = gpytorch.likelihoods.GaussianLikelihood()
model = ExactGPLayer(train_x=train_x, train_y=train_y, likelihood=likelihood, kernel=kernel_type)
self.model = model.cuda()
self.likelihood = likelihood.cuda()
self.mll = gpytorch.mlls.ExactMarginalLogLikelihood(self.likelihood, self.model).cuda()
self.mse = nn.MSELoss()
return self.model, self.likelihood, self.mll
def set_forward(self, x, is_feature=False):
pass
def set_forward_loss(self, x):
pass
def train_loop(self, epoch, optimizer):
batch, batch_labels = get_batch(train_people)
batch, batch_labels = batch.cuda(), batch_labels.cuda()
for inputs, labels in zip(batch, batch_labels):
optimizer.zero_grad()
z = self.feature_extractor(inputs)
self.model.set_train_data(inputs=z, targets=labels)
predictions = self.model(z)
loss = -self.mll(predictions, self.model.train_targets)
loss.backward()
optimizer.step()
mse = self.mse(predictions.mean, labels)
if (epoch%10==0):
print('[%d] - Loss: %.3f MSE: %.3f noise: %.3f' % (
epoch, loss.item(), mse.item(),
self.model.likelihood.noise.item()
))
def test_loop(self, n_support, optimizer=None): # no optimizer needed for GP
inputs, targets = get_batch(test_people)
support_ind = list(np.random.choice(list(range(19)), replace=False, size=n_support))
query_ind = [i for i in range(19) if i not in support_ind]
x_all = inputs.cuda()
y_all = targets.cuda()
x_support = inputs[:,support_ind,:,:,:].cuda()
y_support = targets[:,support_ind].cuda()
x_query = inputs[:,query_ind,:,:,:]
y_query = targets[:,query_ind].cuda()
# choose a random test person
n = np.random.randint(0, len(test_people)-1)
z_support = self.feature_extractor(x_support[n]).detach()
self.model.set_train_data(inputs=z_support, targets=y_support[n], strict=False)
self.model.eval()
self.feature_extractor.eval()
self.likelihood.eval()
with torch.no_grad():
z_query = self.feature_extractor(x_all[n]).detach()
pred = self.likelihood(self.model(z_query))
lower, upper = pred.confidence_region() #2 standard deviations above and below the mean
mse = self.mse(pred.mean, y_all[n])
return mse
def save_checkpoint(self, checkpoint):
# save state
gp_state_dict = self.model.state_dict()
likelihood_state_dict = self.likelihood.state_dict()
nn_state_dict = self.feature_extractor.state_dict()
torch.save({'gp': gp_state_dict, 'likelihood': likelihood_state_dict, 'net':nn_state_dict}, checkpoint)
def load_checkpoint(self, checkpoint):
ckpt = torch.load(checkpoint)
self.model.load_state_dict(ckpt['gp'])
self.likelihood.load_state_dict(ckpt['likelihood'])
self.feature_extractor.load_state_dict(ckpt['net'])
class ExactGPLayer(gpytorch.models.ExactGP):
def __init__(self, train_x, train_y, likelihood, kernel='linear'):
super(ExactGPLayer, self).__init__(train_x, train_y, likelihood)
self.mean_module = gpytorch.means.ConstantMean()
## RBF kernel
if(kernel=='rbf' or kernel=='RBF'):
self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
## Spectral kernel
elif(kernel=='spectral'):
self.covar_module = gpytorch.kernels.SpectralMixtureKernel(num_mixtures=4, ard_num_dims=2916)
else:
raise ValueError("[ERROR] the kernel '" + str(kernel) + "' is not supported for regression, use 'rbf' or 'spectral'.")
def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)