-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSlow_quote.v
386 lines (339 loc) · 12.9 KB
/
Slow_quote.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(* Typed LambdaFactor Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation of *)
(* Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* Slow_quote .v *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import List.
Require Import Max.
Require Import Test.
Require Import General.
Require Import LamSF_Terms.
Require Import LamSF_Substitution_term.
Require Import LamSF_Tactics.
Require Import Compounds.
Require Import Components.
Require Import LamSF_reduction.
Require Import LamSF_Normal.
Require Import LamSF_Closed.
Require Import LamSF_Eval.
Require Import type_derivation.
Require Import type_derivation_rwf.
Require Import operator_types.
Require Import subject_reduction.
Require Import Equal.
Require Import Combinators.
Require Import Unstar.
(* slow quotation separates all applications by introducing a wait. *)
(* the rank is required to keep track of commuting lambda *)
Fixpoint slow_quote_rank p M :=
match p with
| 0 => M
| S q =>
match M with
| Ref n => Ref n
| Op o => Op o
| Abs M1 => App (App a_op (slow_quote_rank q abs_left)) (slow_quote_rank q (star M1))
| App M1 M2 => App (App a_op (slow_quote_rank q M1)) (slow_quote_rank q M2)
end
end.
Definition slow_quote M := slow_quote_rank (rank M) M.
Lemma slow_quote_rank_stable:
forall p q M, p>= q -> q >= rank M -> slow_quote_rank p M = slow_quote_rank q M.
Proof.
induction p; split_all.
assert(rank M >0) by eapply2 rank_positive. noway.
gen_case H0 M.
(* 4 *)
assert(q = S(pred q)) by omega.
rewrite H1. auto.
(* 3 *)
assert(q = S(pred q)) by omega.
rewrite H1. auto.
(* 2 *)
assert(rank l > 0) by eapply2 rank_positive.
assert(q = S(pred q)) by omega.
rewrite H2. simpl.
rewrite (IHp (pred q)).
rewrite (IHp (pred q)).
auto.
omega.
assert(rank(star l) < rank (Abs l)) by eapply2 rank_star.
simpl in *.
omega. omega. unfold_op; simpl; omega.
(* 1 *)
rewrite (IHp (pred q)).
rewrite (IHp (pred q)).
assert(q = S(pred q)) by omega.
rewrite H1. auto.
omega.
omega.
omega.
omega.
Qed.
Lemma slow_quote_abs:
forall M, slow_quote (Abs M) = App (App a_op (slow_quote abs_left)) (slow_quote (star M)).
Proof.
split_all.
unfold slow_quote, rank, slow_quote_rank; fold slow_quote_rank; fold rank.
assert(rank M >0) by eapply2 rank_positive.
assert(abs_rank * rank M = S (pred (abs_rank * rank M))).
unfold abs_rank. omega.
rewrite H0.
simpl.
rewrite (slow_quote_rank_stable (pred
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M + (rank M + (rank M + (rank M + 0)))))))))))))))))))
(rank (star M)) (star M)).
rewrite (slow_quote_rank_stable (pred
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M +
(rank M + (rank M + (rank M + (rank M + 0)))))))))))))))))))
(rank (abs_left)) abs_left).
auto.
assert(rank(star M) < rank (Abs M)) by eapply2 rank_star.
simpl in *. omega.
auto.
assert(rank(star M) < rank (Abs M)) by eapply2 rank_star.
simpl in *. omega.
auto.
Qed.
Lemma slow_quote_app:
forall M N, slow_quote (App M N) = App (App a_op (slow_quote M)) (slow_quote N).
Proof.
split_all.
unfold slow_quote, rank, slow_quote_rank; fold slow_quote_rank; fold rank.
assert(rank M >0) by eapply2 rank_positive.
assert(rank M + rank N = S (pred (rank M + rank N))) by omega. rewrite H0.
rewrite (slow_quote_rank_stable (S (pred (rank M + rank N))) (rank M)); try omega.
rewrite (slow_quote_rank_stable (S (pred (rank M + rank N))) (rank N)); try omega.
auto.
Qed.
Lemma slow_quote_rank_normal_closed:
forall p M, p > rank M -> normal M -> maxvar M = 0 -> normal (slow_quote_rank p M).
Proof.
induction p; split_all.
gen3_case H H0 H1 M.
unfold_op. repeat eapply2 nf_app; try (simpl; discriminate).
eapply2 IHp.
assert(rank(star l) < rank (Abs l)) by eapply2 rank_star.
simpl in *. omega.
repeat eapply2 nf_app; try (simpl; discriminate).
eapply2 IHp.
assert(rank(star l) < rank (Abs l)) by eapply2 rank_star.
simpl in *.
assert(rank(star l) < rank (Abs l)) by eapply2 rank_star.
simpl in *. omega.
inversion H0; eapply2 normal_star.
rewrite maxvar_star. auto.
repeat eapply2 nf_app; try (simpl; discriminate).
unfold_op; auto.
eapply2 IHp. omega.
inversion H0; auto. max_out.
eapply2 IHp. omega.
inversion H0; auto. max_out.
Qed.
(* quote *)
Definition quote_fn :=
Abs (Abs (App (App (App (App (Op Eop) (Ref 0)) (Ref 0)) (Ref 0))
(App (App (Op Gop) (Abs (Abs (App (App a_op (App (Ref 3) (Ref 1)))
(App (Ref 3) (Ref 0))))))
(Ref 0))))
.
Definition quote := App (App a_op y_op) quote_fn.
Theorem quote_type:
derivation nil quote (Abs (funty (varty 0) (varty 0))).
Proof.
unfold quote.
eapply derive_app.
instantiate(1:= funty (Abs (funty (varty 0) (varty 0))) (Abs (funty (varty 0) (varty 0)))).
eapply derive_app.
2: eapply derive_Y. 2: auto.
instantiate(1:= Abs (funty (varty 0) (varty 0))). 2: wfcs_tac.
eapply derive_A. auto. wfcs_tac. wfcs_tac.
unfold quote_fn.
eapply derive_abs.
eapply derive_gen1. simpl. unfold lift; simpl. relocate_lt.
eapply derive_abs.
eapply derive_app.
eapply derive_app. 2: derive_tac.
eapply derive_app. 2: derive_tac.
eapply derive_app. 2: derive_tac.
derive_tac.
eapply derive_app. 2: derive_tac.
eapply derive_app.
derive_tac.
eapply derive_gen1.
unfold lift; simpl. relocate_lt. simpl.
eapply derive_abs.
eapply derive_abs.
eapply derive_app.
eapply derive_app.
(* 3 *)
derive_tac.
eapply derive_app.
2: derive_tac.
eapply derive_instance.
derive_tac.
red; one_step. instantiate(1:= 0).
replace (funty (funty (varty 0) (Ref 1)) (funty (varty 0) (Ref 1)))
with (subst (funty (Ref 0) (varty 1)) (funty (Ref 0) (Ref 0))) by auto.
eapply2 instance_rule.
eapply derive_app.
eapply derive_instance.
derive_tac.
instantiate(1:= Ref 0).
red; one_step.
replace(funty (Ref 0) (varty 0)) with (subst(Ref 0) (funty (Ref 0) (Ref 0))) by auto.
eapply2 instance_rule.
derive_tac.
Qed.
Lemma quote_op : forall o, lamSF_red (App quote (Op o)) (Op o).
Proof. split_all; unfold quote. eval_lamSF. unfold quote_fn.
unfold y_op. eapply2 succ_red. eval_lamSF. unfold lift; simpl.
eapply transitive_red.
eapply preserves_app_lamSF_red. eapply preserves_app_lamSF_red.
eval_lamSF. auto. eapply succ_red. eapply2 g_lamSF_red.
unfold factorable; case o; split_all; auto 10. eval_lamSF.
insert_Ref_tac.
eapply transitive_red.
eapply preserves_app_lamSF_red. eapply preserves_app_lamSF_red.
eapply2 succ_red. auto. auto.
eval_lamSF.
Qed.
Lemma quote_abs_0: forall M, normal M -> maxvar (Abs M) = 0 ->
lamSF_red (App (App y_op quote_fn) (Abs M)) (App (App a_op (App (App y_op quote_fn) abs_left))
(App (App y_op quote_fn) (star M)))
.
Proof.
split_all.
unfold y_op, quote_fn; eapply2 succ_red. eval_lamSF.
unfold lift; rewrite lift_rec_null.
assert(factorable (Abs M)). eapply2 programs_are_factorable. split_all.
inversion H1; split_all; subst;split_all.
simpl in *. gen_case H2 (status M); gen_case H2 n.
eapply transitive_red. eapply preserves_app_lamSF_red. eapply preserves_app_lamSF_red.
eapply preserves_app_lamSF_red. eapply succ_red. eapply2 e_compound_lamSF_red.
eapply2 factorable_abstractions_are_compounds. auto. auto. auto.
eapply succ_red. eapply2 g_lamSF_red. eval_lamSF. simpl. insert_Ref_tac.
eval_lamSF. eval_lamSF. auto.
eapply2 preserves_app_lamSF_red. eapply2 preserves_app_lamSF_red. eval_lamSF. eval_lamSF.
Qed.
Lemma quote_compound_0:
forall M N, program (App M N) ->
lamSF_red (App (App y_op quote_fn) (App M N)) (App (App a_op (App (App y_op quote_fn) M)) (App (App y_op quote_fn) N)).
Proof.
split_all. unfold y_op, quote_fn; eapply2 succ_red. eval_lamSF. eval_lamSF.
unfold lift; rewrite lift_rec_null.
assert(factorable (App M N)). eapply2 programs_are_factorable.
eapply transitive_red. eapply preserves_app_lamSF_red. eapply preserves_app_lamSF_red.
eapply preserves_app_lamSF_red. eapply succ_red. eapply2 e_compound_lamSF_red.
eapply2 factorable_applications_are_compounds. auto. auto. auto.
eapply succ_red. eapply2 g_lamSF_red. eval_lamSF. simpl. insert_Ref_tac.
rewrite subst_rec_closed; try(split_all; omega).
rewrite lift_rec_closed; try(split_all; omega).
eval_lamSF. eval_lamSF.
eapply2 preserves_app_lamSF_red. eapply2 preserves_app_lamSF_red. eval_lamSF. eval_lamSF.
inversion H. simpl in *. max_out. inversion H. simpl in *. max_out.
rewrite lift_rec_closed; try(split_all; omega).
Qed.
Lemma quote_slow_quote_0:
forall M, program M -> lamSF_red (App (App y_op quote_fn) M) (slow_quote M).
Proof.
rank_tac.
unfold program; intros rnk prog; split_all. assert(program M) by split_all.
induction H; split_all.
(* 4 *)
simpl in *; noway.
(* 3 *)
unfold slow_quote; split_all.
unfold y_op, quote_fn. eapply2 succ_red. eval_lamSF.
unfold lift; rewrite lift_rec_null.
eapply transitive_red. eapply preserves_app_lamSF_red. eapply preserves_app_lamSF_red.
eapply2 succ_red. auto.
eapply succ_red. eapply2 g_lamSF_red.
unfold factorable; case o; split_all; auto 10.
eval_lamSF. eval_lamSF.
(* 2 *)
eapply transitive_red. eapply2 quote_abs_0.
rewrite slow_quote_abs.
eapply2 preserves_app_lamSF_red.
eapply2 preserves_app_lamSF_red.
eapply2 IHp.
unfold abs_left; simpl in *. assert(rank M > 0) by eapply2 rank_positive. omega.
unfold_op; unfold program; auto.
eapply2 IHp. assert (rank (star M) < rank (Abs M)) by eapply2 rank_star. omega.
unfold program; split_all. eapply2 normal_star. rewrite maxvar_star. simpl in *; omega.
(* 1 *)
eapply transitive_red. eapply2 quote_compound_0.
rewrite slow_quote_app.
simpl in *.
eapply2 preserves_app_lamSF_red.
eapply2 preserves_app_lamSF_red.
eapply2 IHnormal1.
omega. unfold program; split_all. max_out.
unfold program; split_all. max_out.
eapply2 IHnormal2.
omega. unfold program; split_all. max_out.
unfold program; split_all. max_out.
Qed.
Theorem quote_is_definable :
forall M, program M -> lamSF_red (App quote M) (slow_quote M).
Proof.
split_all. unfold quote. eapply transitive_red. eval_lamSF. eapply2 quote_slow_quote_0.
Qed.
Lemma quote_op0 : forall o, lamSF_red (App (App (App a_op y_op) quote_fn) (Op o)) (Op o).
Proof.
split_all. eval_lamSF. unfold quote_fn, y_op. eapply2 succ_red. repeat eval_lamSF.
unfold lift; rewrite lift_rec_null.
eapply transitive_red. eapply preserves_app_lamSF_red. eapply preserves_app_lamSF_red.
eapply2 succ_red. auto. eapply succ_red. eapply2 g_lamSF_red.
unfold factorable; case o; split_all; auto 10. eval_lamSF. eval_lamSF.
Qed.