-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLamSF_Normal.v
756 lines (709 loc) · 27.6 KB
/
LamSF_Normal.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(* Typed LambdaFactor Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation *)
(* of Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* LamSF_Normal.v *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import General.
Require Import Max.
Require Import Test.
Require Import LamSF_Terms.
Require Import LamSF_Tactics.
Require Import LamSF_Substitution_term.
Require Import Components.
Require Import Compounds.
Require Import LamSF_reduction.
(* normal terms *)
Inductive normal : lamSF -> Prop :=
| nf_ref : forall n, normal (Ref n)
| nf_op : forall o, normal (Op o)
| nf_abs : forall M, normal M -> normal (Abs M)
| nf_app : forall M1 M2, normal M1 -> normal M2 -> status (App M1 M2) <> Reducible ->
normal (App M1 M2)
.
Hint Constructors normal.
Lemma lift_rec_preserves_normal :
forall M, normal M -> forall n k, normal(lift_rec M n k).
Proof.
intros M nor; induction nor; split_all.
eapply2 nf_app.
assert(status (lift_rec (App M1 M2) n k) = relocate_status(status (App M1 M2)) n k).
eapply2 lift_rec_preserves_status.
unfold lift_rec in H0; fold lift_rec in H0.
rewrite H0.
unfold relocate_status.
intro.
gen2_case H H1 (status (App M1 M2)).
Qed.
Lemma normal_I : normal i_op.
Proof.
split_all; unfold_op; repeat eapply2 nf_app; intro; split_all; simpl in *; discriminate. Qed.
Hint Resolve normal_I.
Lemma normal_status :
forall M, normal M -> status M <> Reducible.
Proof.
intros M nor; induction nor; split_all; eauto.
case o; intro; split_all.
intro. gen2_case IHnor H (status M); gen2_case IHnor H n.
Qed.
Lemma normal_star : forall M, normal M -> normal (star M).
Proof.
intros M nor; induction nor; split_all; unfold_op; split_all.
(* 4 *)
case n; split_all. eapply2 nf_app; split_all.
(* 3 *)
eapply2 nf_app. split_all.
(* 2 *)
eapply2 nf_app. split_all.
(* 1 *)
repeat eapply2 nf_app; unfold compound; split_all.
Qed.
Lemma normal_component_l : forall M, normal M -> normal (left_component M).
Proof.
intros M nor; induction nor; split_all; unfold_op; split_all;
repeat eapply2 nf_app; unfold compound; split_all.
Qed.
Lemma normal_component_r : forall M, normal M -> normal (right_component M).
Proof. intros M nor; induction nor; split_all; unfold_op; split_all.
eapply2 normal_star.
Qed.
Definition irreducible M (red:termred) := forall N, red M N -> False.
Lemma ref_irreducible : forall n, irreducible (Ref n) lamSF_red1.
Proof. intro n. red. split_all. inversion H; auto. Qed.
(* restore?
Lemma app3_not_compound:
forall M N1 N2 N3, status (App (App (App M N1) N2) N3) = Compound -> False.
Proof.
rank_tac; split_all.
gen_case H0 (status M).
gen_case H0 M.
gen_case H0 l.
gen_case H0 o.
gen_case H0 (status l0).
gen_case H0 (status l0); gen_case H0 (status N1).
gen_case H0 (status l0); gen_case H0 (status N2).
gen_case H0 l1.
gen_case H0 o.
gen_case H0 (status l2).
gen_case H0 (status l2); gen_case H0 (status N1).
gen_case H0 M.
gen_case H0 o.
gen_case H0 (status N1).
gen_case H0 (status N1); gen_case H0 (status N2).
gen_case H0 (status N1); gen_case H0 (status N3).
gen_case H0 l.
gen_case H0 o.
gen_case H0 (status l0).
gen_case H0 (status l0); gen_case H0 (status N2).
Qed.
*)
Lemma Reducible_implies_reducible :
forall M, status M = Reducible -> exists N, lamSF_red1 M N.
Proof.
rank_tac.
induction M; intros; try (simpl in *; discriminate).
(* 3 *)
gen_case H0 o.
(* 2 *)
simpl in *. gen2_case IHM H0 (status M).
(* 4 *)
assert(exists N, lamSF_red1 M N). eapply2 IHM. omega. split_all. exist (Abs x).
(* 3 *)
gen2_case IHM H0 n.
(* 2 *)
gen2_case IHM H0 n.
(* 1 *)
assert(status M1 = Reducible \/ status M2 = Reducible \/
(exists i, status M1 = Lam i) \/
status M1 = Lazy1 \/
status M1 = Unary_op \/
(status M1 = Binary_op2 /\ compound M2) \/
(status M1 = Eager /\ factorable M2)).
unfold factorable, compound.
simpl in *; gen2_case H0 IHM1 (status M1); eauto;
gen2_case IHM2 H0 (status M2); auto 30.
(* 1 *)
inversion H1. simpl in *; elim(IHM1); split_all; try omega. exist (App x M2).
inversion H2. simpl in *; elim(IHM2); split_all; try omega. exist (App M1 x).
inversion H3. split_all. assert(exists M0, M1 = Abs M0) by eapply2 lam_is_abs.
split_all; subst. eauto.
inversion H4.
(* 2 *)
gen2_case H H5 M1. gen_case H5 o. eauto. gen2_case H H5 l. gen_case H5 o; eauto;
try (gen_case H5 (status l0); fail).
(* 3 *)
eauto.
(* 2 *)
gen2_case H H5 l1; eauto. gen_case H5 o; eauto.
(* 5 *)
gen2_case H H5 (status l2); gen2_case H H5 (status l0).
(* 4 *)
gen2_case H H5 (status l2); gen2_case H H5 (status l0).
(* 3 *)
gen2_case H H5 (status l0).
(* 2 *)
gen_case H5 (status l3); try (gen_case H5 (status l2); fail).
gen_case H5 (status l4);
gen_case H5 (status l2).
gen_case H5 (status l0).
gen_case H5 (status l4);
gen_case H5 (status l2).
(* 1 *)
inversion H5. split_all.
gen3_case H H0 H6 M1; eauto. gen3_case H H0 H6 o; eauto.
gen_case H6 (status l); gen_case H6 (status l0).
inversion H6; split_all.
gen3_case H H0 H8 M1; eauto. gen3_case H H0 H8 o; eauto.
gen_case H8 (status l); gen_case H8 (status l0).
(* 1 *)
gen_case H8 M1; eauto.
gen_case H8 o; eauto.
gen_case H8 l; eauto.
gen_case H8 o; eauto; try (gen_case H8 (status l0); fail).
assert(exists o, l0 = Op o).
gen_case H8 l0; eauto.
gen_case H8 (status l1); eauto;
gen_case H8 n; eauto.
gen_case H8 (status l1); eauto;
gen_case H8 (status l2); eauto.
split_all. subst.
assert(M2 = Op x \/ M2 <> Op x) by (repeat decide equality). inversion H7; subst; eauto.
elim(factorable_implies_compound_or_operator M2); split_all; subst; eauto.
(* 1 *)
assert(status l1 = Ternary_op1).
gen_case H8 (status l1); try (gen_case H8 (status l2); fail).
(* 4 *)
gen_case H8 (status l2); gen_case H8 (status l0).
(* 3 *)
gen_case H8 (status l0).
gen_case H8 (status l0).
elim(factorable_implies_compound_or_operator M2); split_all; subst; eauto.
gen_case H7 l1; eauto. gen_case H7 o; eauto.
assert(M2 = Op Sop \/ M2 <> Op Sop) by (repeat decide equality). inversion H11; subst; eauto.
assert(M2 = Op Aop \/ M2 <> Op Aop) by (repeat decide equality). inversion H11; subst; eauto.
assert(M2 = Op Kop \/ M2 <> Op Kop) by (repeat decide equality). inversion H11; subst; eauto.
assert(M2 = Op Eop \/ M2 <> Op Eop) by (repeat decide equality). inversion H11; subst; eauto.
assert(M2 = Op Gop \/ M2 <> Op Gop) by (repeat decide equality). inversion H11; subst; eauto.
assert(M2 = Op Qop \/ M2 <> Op Qop) by (repeat decide equality). inversion H11; subst; eauto.
assert(M2 = Op Uop \/ M2 <> Op Uop) by (repeat decide equality). inversion H11; subst; eauto.
assert(M2 = Op Yop \/ M2 <> Op Yop) by (repeat decide equality). inversion H11; subst; eauto.
gen_case H7 (status l3);
gen_case H7 (status l4).
gen_case H7 l1. gen_case H7 o; eauto.
assert(x = Sop \/ x <> Sop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Sop) by (intro; eapply2 H11; inversion H12; auto). eauto.
assert(x = Aop \/ x <> Aop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Aop) by (intro; eapply2 H11; inversion H12; auto). eauto.
assert(x = Kop \/ x <> Kop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Kop) by (intro; eapply2 H11; inversion H12; auto). eauto.
assert(x = Eop \/ x <> Eop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Eop) by (intro; eapply2 H11; inversion H12; auto). eauto.
assert(x = Gop \/ x <> Gop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Gop) by (intro; eapply2 H11; inversion H12; auto). eauto.
assert(x = Qop \/ x <> Qop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Qop) by (intro; eapply2 H11; inversion H12; auto). eauto.
assert(x = Uop \/ x <> Uop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Uop) by (intro; eapply2 H11; inversion H12; auto). eauto.
assert(x = Yop \/ x <> Yop) by (repeat decide equality). inversion H10; subst; eauto.
assert(Op x <> Op Yop) by (intro; eapply2 H11; inversion H12; auto). eauto.
(* 2 *)
eauto.
(* 1 *)
gen_case H7 (status l3); gen_case H7 (status l4).
Qed.
Lemma active_irreducible : forall M, forall i, status M = Active i -> irreducible (left_component M) lamSF_red1 -> irreducible (right_component M) lamSF_red1 -> irreducible M lamSF_red1.
Proof.
rank_tac.
induction M; intros rk i s l r; red; split_all.
(* 4 *)
inversion H.
(* 3 *)
inversion H.
(* 2 *)
simpl in s. gen_case s (status M); gen_case s n.
(* 1 *)
inversion H; subst;
try (simpl in s; try discriminate; gen_case s (status M); gen_case s n; fail).
(* 18 *)
eapply2 l.
(* 17 *)
eapply2 r.
(* 16 *)
simpl in s. gen_case s o.
(* 15 *)
simpl in s. gen_case s o; unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
(* 14 *)
simpl in s. unfold compound in H3; gen2_case H3 s (status M2); or_tac.
(* 13 *)
simpl in s. unfold factorable in H3; gen2_case H3 s (status M2); or_tac.
(* 12 *)
simpl in s. gen_case s o.
(* 11 *)
simpl in s. unfold compound in H3; gen2_case H3 s (status M2); or_tac.
(* 10 *)
simpl in s. gen_case s o.
(* 9 *)
simpl in s. unfold compound in H3; gen2_case H3 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
simpl in s. unfold factorable in H2; gen2_case H2 s (status M2); or_tac.
Qed.
Lemma abs_irreducible :
forall M, irreducible M lamSF_red1 -> irreducible (Abs M) lamSF_red1.
Proof. red; split_all. inversion H0. eapply2 H. Qed.
Lemma normal_is_irreducible:
forall M, normal M -> irreducible M lamSF_red1.
Proof.
intros M nor; induction nor; intros.
(* 4 *)
eapply2 ref_irreducible.
red; split_all. inversion H.
eapply2 abs_irreducible.
(* 1 *)
assert((exists i, status (App M1 M2) = Active i \/ status (App M1 M2) = Lam i) \/
status (App M1 M2) = Ternary_op \/
status (App M1 M2) = Binary_op0 \/
status (App M1 M2) = Binary_op2 \/
status (App M1 M2) = Binary_op1 \/
status (App M1 M2) = Ternary_op1 \/
status (App M1 M2) = Unary_op \/
status (App M1 M2) = Lazy2 \/
status (App M1 M2) = Lazy1 \/
status (App M1 M2) = Eager2 \/
status (App M1 M2) = Eager).
gen_case H (status (App M1 M2)); eauto; auto 20.
(* 1 *)
inversion H0; split_all. inversion H2.
eapply2 active_irreducible.
simpl in H1. gen_case H1 (status M1); gen_case H1 (status M2).
(* 1 *)
inversion H1; split_all. inversion H2.
gen_case H4 (status M1); gen_case H4 (status M2).
(* 1 *)
inversion H2; split_all. inversion H3.
gen_case H5 (status M1); gen_case H5 (status M2).
(* 1 *)
inversion H3; split_all. inversion H4.
gen_case H6 (status M1); gen_case H6 (status M2).
(* 1 *)
inversion H4; split_all. inversion H5.
gen_case H7 (status M1); gen_case H7 (status M2).
(* 1 *)
inversion H5; split_all. inversion H6.
gen_case H8 M1. gen_case H8 o; intro; split_all; gen_case H8 (status M2).
gen_case H8 (status l); gen_case H8 n.
gen_case H8 (status l); gen_case H8 (status l0); gen_case H8 (status M2).
(* 1 *)
clear - IHnor1 IHnor2 H6.
inversion H6; split_all. inversion H.
gen3_case IHnor1 H H1 M1. gen3_case IHnor1 H H1 o;
try (intro; split_all; inversion H0; inversion H5; eapply2 IHnor2; fail).
gen_case H (status M2).
gen2_case H H1 (status l); gen2_case H H1 n.
(* 2 *)
gen3_case IHnor1 H H1 l. gen3_case IHnor1 H H1 o;
try (gen3_case IHnor1 H H1 (status l0); gen3_case IHnor1 H H1 (status M2); fail).
gen3_case IHnor1 H H1 (status l1); gen3_case IHnor1 H H1 n.
gen3_case IHnor1 H H1 (status l1).
(* 6 *)
gen3_case IHnor1 H H1 (status l2);
gen3_case IHnor1 H H1 (status l0).
gen3_case IHnor1 H H1 (status l0).
gen3_case IHnor1 H H1 (status M2).
gen3_case IHnor1 H H1 (status l0).
gen3_case IHnor1 H H1 (status l2).
(* 1 *)
inversion H.
inversion H0; split_all.
gen3_case IHnor1 H H2 M1. gen3_case IHnor1 H H2 o;
try(intro; split_all; inversion H1; inversion H7; eapply2 IHnor2; fail).
gen2_case H H2 (status M2).
gen2_case H H2 (status l); gen2_case H H2 n.
(* 2 *)
gen3_case IHnor1 H H2 l. gen3_case IHnor1 H H2 o;
try (gen3_case IHnor1 H H2 (status l0); fail);
try (intro; split_all; inversion H1;
[ inversion H7; [ inversion H11 | eapply2 IHnor1] | eapply2 IHnor2]; fail).
(* 6 *)
gen3_case IHnor1 H H2 (status l0); gen3_case IHnor1 H H2 (status M2).
(* 5 *)
gen3_case IHnor1 H H2 (status M2); gen3_case IHnor1 H H2 n.
(* 4 *)
gen3_case IHnor1 H H2 (status M2).
(* 3 *)
gen3_case IHnor1 H H2 (status l1); gen3_case IHnor1 H H2 n.
(* 2 *)
gen3_case IHnor1 H H2 (status l1).
gen3_case IHnor1 H H2 (status l2);
gen3_case IHnor1 H H2 (status l0).
gen3_case IHnor1 H H2 (status l0).
gen3_case IHnor1 H H2 (status M2).
gen3_case IHnor1 H H2 (status l0).
gen3_case IHnor1 H H2 (status l2);
gen3_case IHnor1 H H2 (status l0).
(* 1 *)
inversion H0.
inversion H1; split_all.
gen3_case IHnor1 H1 H3 M1. gen3_case IHnor1 H1 H3 o;
try(intro; split_all; inversion H2; inversion H8; eapply2 IHnor2; fail).
gen2_case H1 H3 (status M2).
gen2_case H1 H3 (status l); gen2_case H1 H3 n.
(* 2 *)
gen3_case IHnor1 H1 H3 l. gen3_case IHnor1 H1 H3 o;
try (intro; intro; inv lamSF_red1; [eapply2 IHnor1 | eapply2 IHnor2]).
(* 6 *)
gen3_case IHnor1 H1 H3 (status l0); gen3_case IHnor1 H1 H3 (status M2).
(* 5 *)
gen3_case IHnor1 H1 H3 (status M2); gen3_case IHnor1 H1 H3 n.
(* 4 *)
gen3_case IHnor1 H1 H3 (status M2).
(* 3 *)
gen3_case IHnor1 H1 H3 (status l1); gen3_case IHnor1 H1 H3 n.
(* 2 *)
gen3_case IHnor1 H1 H3 (status l1).
gen3_case IHnor1 H1 H3 (status l2);
gen3_case IHnor1 H1 H3 (status l0).
gen3_case IHnor1 H1 H3 (status l0).
gen3_case IHnor1 H1 H3 (status M2).
gen3_case IHnor1 H1 H3 (status l0).
gen3_case IHnor1 H1 H3 (status l2);
gen3_case IHnor1 H1 H3 (status l0).
(* 1 *)
inversion H1; split_all.
(* 2 *)
gen3_case IHnor1 H1 H2 M1. gen3_case IHnor1 H1 H2 o;
try (intro; intro; inv lamSF_red1; eapply2 IHnor2).
(* 4 *)
gen3_case IHnor1 H1 H2 (status M2).
(* 3 *)
gen3_case IHnor1 H1 H2 (status l); gen3_case IHnor1 H1 H2 n.
(* 2 *)
gen3_case IHnor1 H1 H2 l. gen3_case IHnor1 H1 H2 o.
(* 6 *)
gen2_case H1 H2 (status l0); gen2_case H1 H2 (status M2).
(* 5 *)
gen2_case H1 H2 (status M2).
gen2_case H1 H2 (status M2).
gen2_case H1 H2 (status l1); gen2_case H1 H2 n.
gen2_case H1 H2 (status l1).
gen3_case IHnor1 H1 H2 (status l2);
gen3_case IHnor1 H1 H2 (status l0).
gen3_case IHnor1 H1 H2 (status l0).
gen3_case IHnor1 H1 H2 (status M2).
gen3_case IHnor1 H1 H2 (status l0).
gen3_case IHnor1 H1 H2 (status l2);
gen3_case IHnor1 H1 H2 (status l0).
(* 1 *)
gen3_case IHnor1 H1 H2 M1. gen3_case IHnor1 H1 H2 o.
(* 5 *)
assert(exists o, M2 = Op o).
gen3_case IHnor1 H1 H2 M2; eauto.
gen3_case IHnor1 H1 H2 (status l); gen2_case H1 H2 n.
gen3_case IHnor1 H1 H2 (status l); gen3_case IHnor1 H1 H2 (status l0).
split_all. intro; intro; inv lamSF_red1. inversion H9.
unfold compound in H7; gen_case H7 x; or_tac.
intro; intro; inv lamSF_red1. eapply2 IHnor2.
intro; intro; inv lamSF_red1. eapply2 IHnor2.
gen3_case IHnor1 H1 H2 (status l); gen2_case H1 H2 n.
(* 1 *)
gen2_case H1 H2 l. gen3_case IHnor1 H1 H2 o;
try (intro; intro; inv lamSF_red1; try (eapply2 IHnor1; fail); try (eapply2 IHnor2; fail); fail).
(* 5 *)
gen3_case IHnor1 H1 H2 (status l0);
gen3_case IHnor1 H1 H2 (status M2) .
gen3_case IHnor1 H1 H2 (status M2).
gen3_case IHnor1 H1 H2 (status M2).
gen3_case IHnor1 H1 H2 (status l1); gen2_case H1 H2 n.
gen3_case IHnor1 H1 H2 (status l1).
gen3_case IHnor1 H1 H2 (status l2);
gen3_case IHnor1 H1 H2 (status l0).
gen3_case IHnor1 H1 H2 (status l0).
gen3_case IHnor1 H1 H2 (status M2).
gen3_case IHnor1 H1 H2 (status l0).
gen3_case IHnor1 H1 H2 (status l2);
gen3_case IHnor1 H1 H2 (status l0).
Grab Existential Variables.
apply s_op.
Qed.
Lemma normal_not_Reducible: forall M, normal M -> status M <> Reducible.
Proof.
intros; intro. elim(Reducible_implies_reducible M); split_all. eapply2 normal_is_irreducible.
Qed.
(*
The basic progress result, that all irreducible terms are normal.
*)
Theorem progress :
forall (M : lamSF), normal M \/ (exists N, lamSF_red1 M N) .
Proof.
rank_tac.
induction M; try (inversion IHM); subst; split_all; eauto.
(* 2 *)
elim IHM; split_all; try omega.
right; exist (Abs x).
(* 1 *)
elim IHM1; elim IHM2; split_all; eauto; try omega.
clear IHp IHM1 IHM2 H.
inversion H1; subst; eauto.
(* 3 *)
left; eapply2 nf_app. split_all.
(* 2 *)
case o; try (left; eapply2 nf_app; simpl; split_all; unfold compound; or_tac; fail).
gen_case H0 M2; try (left; eapply2 nf_app; simpl; split_all; unfold compound; or_tac; fail).
left; eapply2 nf_app; simpl; split_all. case o0; split_all.
assert(status (Abs l) <> Reducible) by eapply2 normal_not_Reducible.
assert((exists i, status (Abs l) = Active i \/ status (Abs l) = Lam i) \/ factorable (Abs l)).
unfold factorable. gen_case H (status (Abs l)); eauto; auto 20.
inversion H2; split_all.
inversion H4; left; eapply2 nf_app; simpl in *; rewrite H3; intro; discriminate.
elim(factorable_implies_compound_or_operator (Abs l)); split_all; subst; eauto.
(* 3 *)
inversion H0.
assert((exists i, status (App l l0) = Active i \/ status (App l l0) = Lam i) \/
factorable(App l l0)). unfold factorable.
gen_case H5 (status (App l l0)); eauto; auto 20.
inversion H6; split_all.
inversion H8; left; eapply2 nf_app; split_all; intro; simpl in *; rewrite H7 in H9; discriminate.
(* 3 *)
elim(factorable_implies_compound_or_operator (App l l0)); split_all; subst; eauto.
(* 2 *)
eauto.
(* 1 *)
assert(status M2 <> Reducible) by eapply2 normal_not_Reducible.
assert(status M0 <> Reducible) by eapply2 normal_not_Reducible.
assert(status M3 <> Reducible) by eapply2 normal_not_Reducible.
assert((exists i, status M2 = Active i \/ status M2 = Lam i) \/ factorable M2).
unfold factorable. gen_case H4 (status M2); eauto; auto 20.
assert((exists i, status M0 = Active i \/ status M0 = Lam i) \/ factorable M0).
unfold factorable. gen_case H5 (status M0); eauto; auto 20.
assert((exists i, status M3 = Active i \/ status M3 = Lam i) \/ factorable M3).
unfold factorable. gen_case H6 (status M3); eauto; auto 20.
assert((exists i, status (App M0 M3) = Active i \/ status (App M0 M3) = Lam i) \/
factorable (App M0 M3)). unfold factorable.
gen_case H3 (status (App M0 M3)); eauto; auto 20.
(* 1 *)
inversion H10; split_all.
inversion H12.
left; eapply2 nf_app; simpl in *; intro; rewrite H11 in *; discriminate.
assert(exists N, App M0 M3 = Abs N) by eapply2 lam_is_abs. split_all.
(* 1 *)
unfold factorable in H11. inversion H11; split_all. inversion H12.
gen_case H14 (status M0); gen_case H14 (status M3).
(* 1 *)
inversion H12; split_all. inversion H13.
gen_case H15 (status M0); gen_case H15 (status M3).
(* 1 *)
inversion H13; split_all. inversion H14.
gen_case H16 (status M0); gen_case H16 (status M3).
(* 1 *)
inversion H14; split_all. inversion H15.
gen_case H17 (status M0); gen_case H17 (status M3).
(* 1 *)
inversion H15; split_all. inversion H16.
gen_case H18 (status M0); gen_case H18 (status M3).
(* 1 *)
inversion H16; split_all. simpl in *.
gen_case H17 (status M0); gen_case H17 (status M3).
(* 1 *)
inversion H17; split_all. inversion H18.
gen_case H20 M0. gen_case H20 o.
left; repeat eapply2 nf_app; simpl; split_all.
left; repeat eapply2 nf_app; simpl; split_all.
gen_case H20 (status M3).
right; eauto.
(* 2 *)
gen_case H20 l. gen_case H20 o; try (gen_case H20 (status l0); fail).
gen_case H20 (status l0); try (gen_case H20 (status M3); fail).
gen_case H20 (status M3).
gen_case H20 (status M3).
right; eauto.
gen_case H20 (status l1).
gen_case H20 (status l2); gen_case H20 (status l0).
gen_case H20 (status l0).
gen_case H20 (status M3).
gen_case H20 (status l0).
gen_case H20 (status l2).
(* 1 *)
inversion H18; split_all. inversion H19.
gen_case H21 M0. gen_case H21 o.
right; eauto.
gen_case H21 (status M3).
right; eauto.
right; eauto.
gen_case H21 l. gen_case H21 o; eauto.
gen_case H21 (status l0); gen_case H21 (status M3).
gen_case H21 (status M3).
gen_case H21 (status M3).
eauto.
gen_case H21 (status l1).
gen_case H21 (status l2); gen_case H21 (status l0).
gen_case H21 (status l0).
gen_case H21 (status M3).
gen_case H21 (status l0).
gen_case H21 (status l2).
(* 1 *)
inversion H19; split_all. inversion H20.
gen_case H22 M0. gen_case H22 o; try (left; repeat eapply2 nf_app; simpl; split_all; fail).
gen_case H22 (status M3).
right; eauto.
gen_case H22 l. gen_case H22 o; try (right; eauto; fail).
gen_case H22 (status l0); gen_case H22 (status M3).
gen_case H22 (status M3).
gen_case H22 (status M3).
right; eauto.
gen_case H22 (status l1).
gen_case H22 (status l2); gen_case H22 (status l0).
gen_case H22 (status l0).
gen_case H22 (status M3).
gen_case H22 (status l0).
gen_case H22 (status l2).
(* 1 *)
gen2_case H H20 M0.
(* 3 *)
gen_case H20 o; try (left; repeat eapply2 nf_app; simpl; split_all; fail).
(* 5 *)
assert(exists o, M3 = Op o).
gen_case H20 M3. eauto. gen_case H20 (status l); gen_case H20 n.
gen_case H20 (status l); gen_case H20 (status l0).
(* 5 *)
split_all. subst.
inversion H7; split_all.
inversion H22;
left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate); rewrite H21; auto;
try (intro; discriminate).
assert(M2 = Op x \/ M2 <> Op x) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 4 *)
inversion H7; split_all.
inversion H22;
left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate); rewrite H21; auto;
try (intro; discriminate).
eauto.
(* 3 *)
inversion H7; split_all.
inversion H22;
left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate); rewrite H21; auto;
try (intro; discriminate).
elim(factorable_implies_compound_or_operator M2); split_all; subst; eauto.
(* 2 *)
right; eauto.
(* 1 *)
gen_case H20 l. 2: right; eauto.
gen_case H20 o; try (gen_case H20 (status M3); fail).
(* 11 *)
assert(exists o, l0 = Op o).
gen_case H20 l0. eauto. gen_case H20 (status l1); gen_case H20 n.
gen_case H20 (status l2); gen_case H20 (status l1).
split_all. subst.
inversion H9; split_all.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate); rewrite H21; auto;
try (intro; discriminate).
assert(M3 = Op x \/ M3 <> Op x) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 10 *)
inversion H7; split_all.
inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate); rewrite H27; auto;
try (intro; discriminate).
elim(factorable_implies_compound_or_operator M2); split_all; subst; eauto.
(* 9 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Sop \/ M2 <> Op Sop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 8 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Aop \/ M2 <> Op Aop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 7 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Kop \/ M2 <> Op Kop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 6 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Eop \/ M2 <> Op Eop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 5 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Gop \/ M2 <> Op Gop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 4 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Qop \/ M2 <> Op Qop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 3 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Uop \/ M2 <> Op Uop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 2 *)
inversion H7; split_all. inversion H.
inversion H22; left; repeat eapply2 nf_app; simpl; case x; auto; try (intro; discriminate);
rewrite H27; auto;
try (intro; discriminate).
assert(M2 = Op Yop \/ M2 <> Op Yop) by repeat decide equality.
inversion H22; right; subst; eauto.
(* 1 *)
gen_case H20 (status l1).
gen_case H20 (status l2); gen_case H20 (status l0).
gen_case H20 (status l0).
gen_case H20 (status M3).
gen_case H20 (status l0).
gen_case H20 (status l2); gen_case H20 (status l0).
Qed.
Lemma irreducible_is_normal:
forall M, irreducible M lamSF_red1 -> normal M.
Proof. split_all. elim(progress M); split_all. assert False by eapply2 H; noway. Qed.
Theorem irreducible_iff_normal: forall M, irreducible M lamSF_red1 <-> normal M.
Proof. split_all. eapply2 irreducible_is_normal. eapply2 normal_is_irreducible. Qed.
Lemma normal_is_stable: forall M, normal M -> forall N, lamSF_red M N -> N = M.
Proof.
split_all.
inversion H0; inv1 lamSF_red.
assert False by eapply2 normal_is_irreducible. noway.
Qed.