-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathComponents.v
192 lines (153 loc) · 5.32 KB
/
Components.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
(**********************************************************************)
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(**********************************************************************)
(* Typed LambdaFactor Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation of *)
(* Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* Components.v *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import Test.
Require Import General.
Require Import LamSF_Terms.
Require Import LamSF_Tactics.
Require Import LamSF_Substitution_term.
Definition s_op := Op Sop.
Definition a_op := Op Aop.
Definition k_op := Op Kop.
Definition e_op := Op Eop.
Definition g_op := Op Gop.
Definition q_op := Op Qop.
Definition u_op := Op Uop.
Definition y_op := Op Yop.
Definition i_op := App (App s_op k_op) k_op.
Definition other_left := App (App s_op k_op) i_op.
Definition abs_left := i_op . (* App (App s_op (App (App s_op (App k_op s_op)) k_op)) (App k_op i_op). *)
Ltac unfold_op := unfold abs_left, other_left,
i_op, s_op, a_op, k_op, e_op, g_op, q_op, u_op, y_op.
Ltac or_tac :=
match goal with
| H : _ \/ _ |- _ => inversion H; [ discriminate | clear H; or_tac ]
| _ => split_all
end.
(* rank *)
Definition abs_rank := 18.
(* chosen to ensure that star reduces the rank *)
Fixpoint rank (M: lamSF) :=
match M with
| Ref _ => 1
| Op _ => 1
| App M1 M2 => S((rank M1) + (rank M2))
| Abs M1 => abs_rank * rank M1
end.
Lemma rank_positive: forall M, rank M > 0.
Proof.
induction M; split_all; try omega.
Qed.
Ltac rank_tac := match goal with
| |- forall M, ?P =>
cut (forall p M, p >= rank M -> P ); [ intros H M; eapply2 H |
intro p; induction p; intro M; [ assert(rank M >0) by eapply2 rank_positive; noway |]
]
end .
Lemma lift_rec_preserves_rank :
forall (M: lamSF) (n k: nat), rank (lift_rec M n k) = rank M.
Proof. induction M; split_all. Qed.
(* star abstraction *)
Fixpoint star M :=
match M with
| Ref 0 => i_op
| Ref (S n) => App k_op (Ref n)
| Op o => App k_op (Op o)
| Abs M1 => App a_op (Abs (star M1))
| App M1 M2 => App (App s_op (Abs M1)) (Abs M2)
end
.
Lemma rank_star:
forall M, rank (star M) < rank (Abs M).
Proof. induction M; split_all; simpl in *; try omega. (* slow *) case n; split_all; omega. Qed.
Lemma star_monotonic:
forall M N,
star M = star N -> M = N.
Proof.
induction M; split_all.
(* 4 *)
gen_case H n.
(* 5 *)
gen_case H N; try discriminate.
gen_case H n0; discriminate.
(* 4 *)
gen_case H N.
gen_case H n1.
discriminate.
(* 3 *)
gen_case H N.
gen_case H n.
discriminate.
(* 2 *)
gen_case H N.
gen_case H n.
discriminate.
inversion H.
assert(M = l). eapply2 IHM.
congruence.
discriminate.
(* 1 *)
gen_case H N.
gen_case H n.
discriminate.
discriminate.
Qed.
Lemma lift_rec_preserves_star : forall (M : lamSF) n k,
lift_rec(star M) n k = star (lift_rec M (S n) k).
Proof.
induction M; split_all.
case n; split_all.
rewrite relocate_succ. auto.
rewrite IHM. auto.
Qed.
(* components *)
Fixpoint right_component (M : lamSF) :=
match M with
| Op o => k_op
| App _ M2 => M2
| Abs M1 => star M1
| _ => M
end.
Definition left_component (U : lamSF) :=
match U with
| Op o => App k_op (Op o)
| Abs _ => abs_left
| App U1 _ => U1
| _ => other_left
end.
Lemma lift_rec_preserves_components_l : forall (M : lamSF) n k,
lift_rec(left_component M) n k = left_component(lift_rec M n k).
Proof. induction M; split_all; case b0; case b; split_all. Qed.
Lemma lift_rec_preserves_components_r : forall (M : lamSF) n k,
lift_rec(right_component M) n k = right_component(lift_rec M n k).
Proof. induction M; split_all.
rewrite lift_rec_preserves_star.
auto.
Qed.