-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlight_insensitive_scaling.py
279 lines (235 loc) · 11.2 KB
/
light_insensitive_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Build after the matlab implementation by Jason Su: https://web.stanford.edu/~sujason/ColorBalancing/Code/
import numpy as np
import cv2
import argparse
CAT_TYPE_BRADFORD = 0
CAT_TYPE_KRIES = 1
CAT_TYPE_XYZ_SCALING = 2
XYZ_D65 = np.array([95.04, 100, 108.88], dtype=np.float32)
RGB2YUV = np.array([[0.299, 0.587, 0.114],
[-0.299, -0.587, 0.886],
[0.701, -0.587, -0.114]])
YUV2RGB = np.linalg.inv(RGB2YUV)
RGB2XYZ = [
[0.4124564, 0.3575761, 0.1804375],
[0.2126729, 0.7151522, 0.0721750],
[0.0193339, 0.1191920, 0.9503041]
]
XYZ2RGB = np.linalg.inv(RGB2XYZ)
def cb_cat_matrix(source_white, dest_white, type=CAT_TYPE_BRADFORD):
if type == CAT_TYPE_BRADFORD:
mat = np.array([[0.8951000, 0.2664000, -0.1614000],
[-0.7502000, 1.7135000, 0.0367000],
[0.0389000, -0.0685000, 1.029600]])
# inv_mat = np.array([[0.9869929, -0.1470543, 0.1599627],
# [0.4323053, 0.5183603, 0.0492912],
# [-0.0085287, 0.0400428, 0.9684867]])
elif type == CAT_TYPE_KRIES:
mat = np.array([[0.4002400, 0.7076000, -0.0808100],
[-0.2263000, 1.1653200, 0.0457000],
[0.0000000, 0.0000000, 0.9182200]])
# inv_mat = np.array([[1.8599364, -1.1293816, 0.2198974],
# [0.3611914, 0.6388125, -0.0000064],
# [0, 0, 1.0890636]])
elif type == CAT_TYPE_XYZ_SCALING:
mat = np.identity(3)
else:
raise ValueError("Not yet implemented")
# if dest_white is None:
# dest_white = (255, 255, 255)
# if source_white is None:
# # most_white_pixel_index = np.argmin(np.sum(np.square(np.subtract(255, image, dtype=np.int32)), axis=2))
# # source_white = image[np.unravel_index(most_white_pixel_index, image.shape[0:2])]
# hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# most_white_pixel_index = np.argmin(hsv_image[:, :, 1] + hsv_image[:, :, 2])
# source_white = image[np.unravel_index(most_white_pixel_index, image.shape[0:2])]
# source_white = np.array(source_white, dtype=np.float32)
# dest_white = np.array(dest_white, dtype=np.float32)
# dest_white1 = np.matmul(dest_white[::-1] / 255, rgb2_xyz)
# source_white1 = np.matmul(source_white[::-1] / 255, rgb2_xyz)
# print(dest_white1, source_white1)
# source_white = cv2.cvtColor(np.reshape(source_white / 255, (1, 1, 3)), cv2.COLOR_BGR2XYZ)[0, 0]
# dest_white = cv2.cvtColor(np.reshape(dest_white / 255, (1, 1, 3)), cv2.COLOR_BGR2XYZ)[0, 0]
# print(source_white, dest_white)
scale_mat = (np.matmul(mat, dest_white) / np.matmul(mat, source_white)) * np.identity(3)
# print(scale_mat)
complete_mat = np.matmul(np.linalg.lstsq(mat, scale_mat, rcond=-1)[0], mat)
# print("completeMat\n", complete_mat)
out_mat = np.matmul(XYZ2RGB, np.matmul(complete_mat, RGB2XYZ))
# print("outmat\n", out_mat)
return out_mat
# out = np.matmul(image / 255, out_mat)
# out = out / np.max(out) * 255
# return out.astype(np.uint8)
# xyz = cv2.cvtColor(image.astype(np.float32), cv2.COLOR_BGR2XYZ)
# flattened = reshape_image(xyz)
# print("xyz_image\n", flattened[1000:1005])
# flattened_scaled = np.matmul(flattened, complete_mat)
# scaled_xyz = unshape_image(flattened_scaled.astype(np.float32), image.shape)
# scaled = cv2.cvtColor(scaled_xyz, cv2.COLOR_XYZ2BGR)
# print("scaled\n", reshape_image(scaled)[42600:42605])
# return scaled.astype(np.int8)
def robust_awb(image, cat_type, dev_thresh=0.3, max_iter=100):
conv_thresh = 0.001
improve_thresh = 0.000001
image_reshaped = reshape_image(image)
# print(image[2:5, 150])
# print("image_reshaped\n", image_reshaped[63752:63755])
u_avgs = []
v_avgs = []
# tot_grays = []
for i in range(max_iter):
# print(f"iteration{i}")
# Transpose for multiplying from left instead of right
yuv = np.matmul(image_reshaped[:, ::-1], RGB2YUV.T)
# TODO try cv2.cvtColor
# yuv = np.reshape(cv2.cvtColor(np.reshape(image_reshaped, image.shape), cv2.COLOR_BGR2YUV), (-1, 3))
# print("yuv\n", yuv[1000:1005], yuv.shape)
# find gray chromaticity - (|u|+|v|)/y
chromaticity = (np.abs(yuv[:, 1]) + np.abs(yuv[:, 2])) / yuv[:, 0]
# print("chroma\n", chromaticity[1000:1005], chromaticity.shape)
chrom_in_thresh = chromaticity < dev_thresh
# tot_grays.append(np.sum(chrom_in_thresh))
if not any(chrom_in_thresh): #tot_grays[-1] == 0:
# print("No valid gray pixels found")
break
gray_indices = np.where(chrom_in_thresh)[0]
grays = yuv[gray_indices]
# print("graysum", sum(chrom_in_thresh))
# print("grays\n", grays[0:5])
u_avg = np.mean(grays[:, 1])
v_avg = np.mean(grays[:, 2])
# print(u_avg, v_avg)
u_avgs.append(u_avg)
v_avgs.append(v_avg)
if max(abs(u_avg), abs(v_avg)) < conv_thresh:
# print(f"Converged with u_avg and v_avg < {conv_thresh}")
break
elif i >= 1 and np.linalg.norm([u_avg - u_avgs[-2], v_avg - v_avgs[-2]]) < improve_thresh:
# print("u and v no longer improving")
break
rgb_est = np.matmul(YUV2RGB, [100, u_avg, v_avg]) # TODO use cv2.cvtColor
xyz_est = cv2.cvtColor(np.reshape(rgb_est.astype(np.float32), (1, 1, 3)), cv2.COLOR_RGB2XYZ)[0, 0]
xyz_est = xyz_est / xyz_est[1] * 100 # norm y to 100 (D65 luminance comparable
# print("xyzEst\n", xyz_est)
cb_cat_mat = cb_cat_matrix(xyz_est, XYZ_D65, cat_type)
image_reshaped = np.matmul(image_reshaped[:, ::-1], cb_cat_mat.T)[:, ::-1]
# print("scaled\n", image_reshaped[42600:42605])
return unshape_image(image_reshaped, image.shape).astype(np.uint8)
def gray_world(image, cat_type, max_iter=100):
conv_thresh = 0.001
improve_thresh = 0.000001
image_reshaped = reshape_image(image)
gray_diffs = []
for i in range(max_iter):
rgb_est = np.mean(image_reshaped[:, ::-1].T, axis=1)
gray_diff = np.linalg.norm([rgb_est[0] - rgb_est[1], rgb_est[0] - rgb_est[2], rgb_est[1] - rgb_est[2]])
gray_diffs.append(gray_diff)
if gray_diff < conv_thresh:
print("Converged. RGB difference vector <", conv_thresh)
break
elif i > 0 and abs(gray_diffs[-2] - gray_diff) < improve_thresh:
print("RGB difference vector no longer improving")
break
xyz_est = cv2.cvtColor(np.reshape(rgb_est.astype(np.float32), (1, 1, 3)), cv2.COLOR_RGB2XYZ)[0, 0]
xyz_est = xyz_est / xyz_est[1] * 100 # norm y to 100 (D65 luminance comparable
cb_cat_mat = cb_cat_matrix(xyz_est, XYZ_D65, cat_type)
image_reshaped = np.matmul(image_reshaped[:, ::-1], cb_cat_mat.T)[:, ::-1]
return unshape_image(image_reshaped, image.shape).astype(np.uint8)
def simplest_color_balance(image, sat_level=0.01):
image_reshaped = reshape_image(image)
q = [sat_level / 2, 1 - sat_level/2]
quantiles = np.quantile(image_reshaped, q, axis=0)
image_reshaped = np.where(image_reshaped < quantiles[0], quantiles[0],
np.where(image_reshaped > quantiles[1], quantiles[1], image_reshaped))
lowest = np.min(image_reshaped, axis=0)
highest = np.max(image_reshaped, axis=0)
image_reshaped = (image_reshaped - lowest) * 255 / (highest - lowest)
return unshape_image(image_reshaped, image.shape).astype(np.uint8)
def reshape_image(image):
return np.reshape(np.transpose(image, (1, 0, 2)), (-1, 3))
def unshape_image(image, shape):
return np.transpose(np.reshape(image, (shape[1], shape[0], shape[2])), (1, 0, 2))
def scale_image_lighting(image, args):
type = args.get("type")
if type == "scb":
method = simplest_color_balance
sat_level = args.get("satlevel")
m_args = [sat_level if sat_level is not None else 0.01]
else:
method = robust_awb if type == "rwb" else gray_world if type == "gw" else None
if method is None:
print("type must be given")
cat_type = args.get("cattype", "bradford")
cat_type = CAT_TYPE_BRADFORD if cat_type == "bradford" else CAT_TYPE_KRIES if cat_type == "kries" \
else CAT_TYPE_XYZ_SCALING
m_args = [cat_type]
return method(image, *m_args)
if __name__ == '__main__':
# image = cv2.imread("./data/cube_4x4_0.jpg")
# image = cv2.imread("./data/test_dog.png")
# scaled = simplest_color_balance(image)
# scaled = gray_world(image, CAT_TYPE_XYZ_SCALING)
# scaled_brad = gray_world(image, CAT_TYPE_BRADFORD)
# scaled_kries = gray_world(image, CAT_TYPE_KRIES)
# scaled = robust_awb(image, CAT_TYPE_XYZ_SCALING)
# scaled_brad = robust_awb(image, CAT_TYPE_BRADFORD)
# scaled_kries = robust_awb(image, CAT_TYPE_KRIES)
# cv2.imwrite("./data/scaled.png", scaled)
# cv2.imshow("image", image)
# cv2.imshow("scaled", scaled)
# cv2.imshow("brad", scaled_brad)
# cv2.imshow("kries", scaled_kries)
# cv2.waitKey(0)
# test_im = image[:5, :10]
# print(test_im.shape)
# reshaped = reshape_image(test_im)
# print(reshaped.shape)
# unshaped = unshape_image(reshaped, test_im.shape)
# print(unshaped.shape)
# print(sum(test_im == unshaped))
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", help="path to input image")
ap.add_argument("-v", "--video", help="path to input video")
ap.add_argument("-t", "--type", required=True, choices=['scb', 'gw', 'rawb'],
help="scaling type: simple color balance, gray world, robust auto-white balance")
ap.add_argument("-c", "--cattype", choices=["bradford", "kries", "xyz"], help="cattype")
ap.add_argument("-s", "--satlevel", type=float, help="saturation level for scb")
ap.add_argument("-o", "--output", help="output path only supported for image so far")
args = vars(ap.parse_args())
type = args.get("type")
if type == "scb":
method = simplest_color_balance
sat_level = args.get("satlevel")
m_args = [sat_level if sat_level is not None else 0.01]
else:
method = robust_awb if type == "rwb" else gray_world
cat_type = args.get("cattype", "bradford")
cat_type = CAT_TYPE_BRADFORD if cat_type == "bradford" else CAT_TYPE_KRIES if cat_type == "kries" \
else CAT_TYPE_XYZ_SCALING
m_args = [cat_type]
image_path = args.get("image", False)
video_path = args.get("video", None)
fields_count = args.get("count", 9)
if image_path:
_image = cv2.imread(image_path)
if _image is None:
print("No such image")
exit(-1)
_image = method(_image, *m_args)
cv2.imshow("Output", _image)
cv2.waitKey(0)
ouput_path = args.get("output", None)
if ouput_path is not None:
cv2.imwrite(ouput_path, _image)
else:
vc = cv2.VideoCapture(0 if not video_path else video_path)
while True:
_, frame = vc.read()
if frame is None:
break
frame = method(frame, *m_args)
cv2.imshow("scaled frame", frame)
key = cv2.waitKey(1)
if key == ord("q"):
break