|
| 1 | +# 1140. Stone Game II |
| 2 | + |
| 3 | +- Difficulty: Medium. |
| 4 | +- Related Topics: Array, Math, Dynamic Programming, Prefix Sum, Game Theory. |
| 5 | +- Similar Questions: Stone Game V, Stone Game VI, Stone Game VII, Stone Game VIII, Stone Game IX. |
| 6 | + |
| 7 | +## Problem |
| 8 | + |
| 9 | +Alice and Bob continue their games with piles of stones. There are a number of piles **arranged in a row**, and each pile has a positive integer number of stones `piles[i]`. The objective of the game is to end with the most stones. |
| 10 | + |
| 11 | +Alice and Bob take turns, with Alice starting first. Initially, `M = 1`. |
| 12 | + |
| 13 | +On each player's turn, that player can take **all the stones** in the **first** `X` remaining piles, where `1 <= X <= 2M`. Then, we set `M = max(M, X)`. |
| 14 | + |
| 15 | +The game continues until all the stones have been taken. |
| 16 | + |
| 17 | +Assuming Alice and Bob play optimally, return the maximum number of stones Alice can get. |
| 18 | + |
| 19 | + |
| 20 | +Example 1: |
| 21 | + |
| 22 | +``` |
| 23 | +Input: piles = [2,7,9,4,4] |
| 24 | +Output: 10 |
| 25 | +Explanation: If Alice takes one pile at the beginning, Bob takes two piles, then Alice takes 2 piles again. Alice can get 2 + 4 + 4 = 10 piles in total. If Alice takes two piles at the beginning, then Bob can take all three piles left. In this case, Alice get 2 + 7 = 9 piles in total. So we return 10 since it's larger. |
| 26 | +``` |
| 27 | + |
| 28 | +Example 2: |
| 29 | + |
| 30 | +``` |
| 31 | +Input: piles = [1,2,3,4,5,100] |
| 32 | +Output: 104 |
| 33 | +``` |
| 34 | + |
| 35 | + |
| 36 | +**Constraints:** |
| 37 | + |
| 38 | + |
| 39 | + |
| 40 | +- `1 <= piles.length <= 100` |
| 41 | + |
| 42 | +- `1 <= piles[i] <= 104` |
| 43 | + |
| 44 | + |
| 45 | + |
| 46 | +## Solution |
| 47 | + |
| 48 | +```javascript |
| 49 | +/** |
| 50 | + * @param {number[]} piles |
| 51 | + * @return {number} |
| 52 | + */ |
| 53 | +var stoneGameII = function(piles) { |
| 54 | + var dp = Array(piles.length).fill(0).map(() => ({})); |
| 55 | + var suffixSum = Array(piles.length); |
| 56 | + for (var i = piles.length - 1; i >= 0; i--) { |
| 57 | + suffixSum[i] = (suffixSum[i + 1] || 0) + piles[i]; |
| 58 | + } |
| 59 | + return helper(piles, 0, 1, dp, suffixSum); |
| 60 | +}; |
| 61 | + |
| 62 | +var helper = function(piles, i, M, dp, suffixSum) { |
| 63 | + if (dp[i][M]) return dp[i][M]; |
| 64 | + var res = 0; |
| 65 | + var sum = 0; |
| 66 | + for (var j = 0; j < 2 * M && i + j < piles.length; j++) { |
| 67 | + sum += piles[i + j]; |
| 68 | + res = Math.max( |
| 69 | + res, |
| 70 | + i + j + 1 === piles.length |
| 71 | + ? sum |
| 72 | + : sum + suffixSum[i + j + 1] - helper(piles, i + j + 1, Math.max(M, j + 1), dp, suffixSum) |
| 73 | + ); |
| 74 | + } |
| 75 | + dp[i][M] = res; |
| 76 | + return res; |
| 77 | +} |
| 78 | +``` |
| 79 | + |
| 80 | +**Explain:** |
| 81 | + |
| 82 | +nope. |
| 83 | + |
| 84 | +**Complexity:** |
| 85 | + |
| 86 | +* Time complexity : O(n ^ 3). |
| 87 | +* Space complexity : O(n ^ 2). |
0 commit comments