-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPSCS_LOC.cpp
271 lines (232 loc) · 9.31 KB
/
PSCS_LOC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
* @file PSCS_LOC.cpp
* @author SeungMin Shin, Haneulbit Kim, Chan Lee
* @license This project is released under the MIT License (MIT)
* @copyright Copyright (c) 2018 Asgardia
* @date June 2018
* @brief ...
*/
#include "PSCS_LOC.h"
#define PI 3.14159265358979
float PSCSdegreesToRadians(float degrees) {
return degrees *(PI/180.); // () 가 매우 중요
}
float PSCSradiansToDegrees(float radians) {
return radians *(180./PI); // () 가 매우 중요
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Vincenty Inverse Solution of Geodesics on the Ellipsoid (c) Chris Veness 2002-2010 */
/* */
/* from: Vincenty inverse formula - T Vincenty, "Direct and Inverse Solutions of Geodesics on the */
/* Ellipsoid with application of nested equations", Survey Review, vol XXII no 176, 1975 */
/* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Calculates geodetic distance between two points specified by latitude/longitude using
* Vincenty inverse formula for ellipsoids
*
* @param {Number} lat1, lon1: first point in decimal degrees
* @param {Number} lat2, lon2: second point in decimal degrees
* @returns (Number} distance in metres between points
*/
bool distanceVincenty(float point1[],float point2[],float results[]){
float lat1=point1[0];float lon1=point1[1];
float lat2=point2[0];float lon2=point2[1];
float a = 6378137, b = 6356752.314245, f = 1/298.257223563; // WGS-84 ellipsoid params
float L = PSCSdegreesToRadians((lon2-lon1));
float U1 = atan((1-f) * tan(PSCSdegreesToRadians(lat1)));
float U2 = atan((1-f) * tan(PSCSdegreesToRadians(lat2)));
float sinU1 = sin(U1), cosU1 = cos(U1);
float sinU2 = sin(U2), cosU2 = cos(U2);
float cosSqAlpha,cos2SigmaM,sinSigma,sinLambda,cosLambda,cosSigma,sigma ;
float lambda = L, lambdaP, iterLimit = 100;
do {
sinLambda = sin(lambda);
cosLambda = cos(lambda);
sinSigma = sqrt((cosU2*sinLambda) * (cosU2*sinLambda) +
(cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
if (sinSigma==0) return 0; // co-incident points
cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
sigma = atan2(sinSigma, cosSigma);
float sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
cosSqAlpha = 1 - sinAlpha*sinAlpha;
cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha;
if (isnan(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (§6)
float C = (f/16)*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
lambdaP = lambda;
lambda = L + (1-C) * f * sinAlpha *
(sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
} while ((fabs(lambda-lambdaP) > 1e-12) && (--iterLimit > 0));
if (iterLimit==0) return false; // formula failed to converge
float uSq = cosSqAlpha * (a*a - b*b) / (b*b);
float A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
float B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
float deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
float s = b*A*(sigma-deltaSigma);
//s = s.toFixed(3); // round to 1mm precision
results[0]= s;
// note: to return initial/final bearings in addition to distance, use something like:
float fwdAz = atan2(cosU2*sinLambda, cosU1*sinU2-sinU1*cosU2*cosLambda);
float revAz = atan2(cosU1*sinLambda, -sinU1*cosU2+cosU1*sinU2*cosLambda);
results[1]=PSCSradiansToDegrees(fwdAz);
if(results[1]<0)results[1]+=360.;
results[2]=PSCSradiansToDegrees(revAz);
if(results[2]<0)results[2]+=360.;
//return { distance: s, initialBearing: fwdAz.toDeg(), finalBearing: revAz.toDeg() };
return true;
}
/**************************************************************************
* Module: vincenty (direct).
*
* Calculate WGS 84 destination given starting lat/long (degrees),
* bearing (degrees) & distance (Meters).
*
* from: Vincenty direct formula - T Vincenty, "Direct and Inverse
* Solutions of Geodesics on the Ellipsoid with application of
* nested equations", Survey Review, vol XXII no 176, 1975
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
*
* Ported from web java script implementation. Code standard is a bit
* odd, but it's efficient and closely parallels the alg equations.
*
* Doug Summers Nov 2010
*
************************************************************/
void destinationVincenty(float point1[],float dest[],float bearing, float dist){
//double lat1, double lon1, double bearing, double dist,
// double *lat2out, double *lon2out)
// WGS-84 ellipsiod
float a=6378137.0, b=6356752.3142, f=1/298.257223563;
float alpha1,sinAlpha, sinAlpha1, cosAlpha1, cosSqAlpha;
float sigma, sigma1, cos2SigmaM, sinSigma, cosSigma, deltaSigma, sigmaP;
float tanU1, cosU1, sinU1, uSq;
float A, B, C, L, lambda;
float tmp, lat2;
float revAz; /* unused but retained for alg completeness */
float lat1=point1[0],lon1=point1[1];
/* code body */
alpha1 = PSCSdegreesToRadians(bearing);
sinAlpha1 = sin(alpha1);
cosAlpha1 = cos(alpha1);
tanU1 = (1-f) * tan(PSCSdegreesToRadians(lat1));
cosU1 = 1 / sqrt((1 + tanU1*tanU1));
sinU1 = tanU1*cosU1;
sigma1 = atan2(tanU1, cosAlpha1);
sinAlpha = cosU1 * sinAlpha1;
cosSqAlpha = 1 - sinAlpha*sinAlpha;
uSq = cosSqAlpha * (a*a - b*b) / (b*b);
A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
sigma = dist / (b*A);
sigmaP = 2*PI;
while (fabs(sigma-sigmaP) > 1e-12) {
cos2SigmaM = cos(2*sigma1 + sigma);
sinSigma = sin(sigma);
cosSigma = cos(sigma);
deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
sigmaP = sigma;
sigma = dist / (b*A) + deltaSigma;
}
tmp = sinU1*sinSigma - cosU1*cosSigma*cosAlpha1;
lat2 = atan2(sinU1*cosSigma + cosU1*sinSigma*cosAlpha1,
(1-f)*sqrt(sinAlpha*sinAlpha + tmp*tmp));
lambda = atan2(sinSigma*sinAlpha1,
cosU1*cosSigma - sinU1*sinSigma*cosAlpha1);
C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
L = lambda - (1-C)*f*sinAlpha*(sigma+C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
// final bearing
dest[2] = atan2(sinAlpha, -tmp);
// algorithm convention uses Deg outputs
dest[0] = PSCSradiansToDegrees(lat2);
dest[1] = lon1+(PSCSradiansToDegrees(L));
}
/*
point[lat,lng] @dd,ddddddd
result[0]=distance in meters
result[1]=inital bearing (deg)
result[2]=final bearing (deg)
*/
bool AlgLocation::getDistanceBearing(float point1[],float point2[],float results[]){
return distanceVincenty(point1,point2,results);
}
/*
input point[lat,lng] @dd,ddddddd
bearing (deg)
dist (meter)
output dest[]
*/
void AlgLocation::getDestination(float point1[],float dest[],float bearing, float dist){
destinationVincenty(point1,dest,bearing, dist);
}
TskLocation::TskLocation()
{
}
void TskLocation::begin()
{
if(testVincenty())Serial.println(F("vincenty is OK"));
_distance=0.0; //Initialize distance
_bearing_angle=0.0; //Initialize bearing Angle
_destination_coord.alt=0.0; //Initialize Altitude
_destination_coord.lat=0.0; //Initialize Latitude
_destination_coord.lng=0.0; //Initialize Longitude
_current_coord.alt=0.0; //Initialize Altitude
_current_coord.lat=0.0; //Initialize Latitude
_current_coord.lng=0.0; //Initialize Longitude
}
void TskLocation::setDestination(GpsCoordinates coord)
{
_destination_coord.alt=coord.alt;
_destination_coord.lat=coord.lat;
_destination_coord.lng=coord.lng;
}
GpsCoordinates TskLocation::getDestination()
{
GpsCoordinates coord;
coord.alt=_destination_coord.alt;
coord.lat=_destination_coord.lat;
coord.lng=_destination_coord.lng;
return(coord);
}
void TskLocation::updateCurrentCoord(GpsCoordinates coord)
{
_current_coord.alt=coord.alt;
_current_coord.lat=coord.lat;
_current_coord.lng=coord.lng;
}
void TskLocation::calculateDistanceBearing()
{
float curr[2],dest[2],results[3];
curr[0]=_current_coord.lat;
curr[1]=_current_coord.lng;
dest[0]=_destination_coord.lat;
dest[1]=_destination_coord.lng;
_alorithm_location.getDistanceBearing(curr,dest,results);
_distance=results[0];
_bearing_angle=results[1];
}
float TskLocation::getDistance()
{
return _distance;
}
float TskLocation::getBearingAngle()
{
return _bearing_angle;
}
bool TskLocation::testVincenty()
{
GpsCoordinates dest_coord,curr_coord;
dest_coord.lat=37.287413;
dest_coord.lng=127.062302;
curr_coord.lat=37.359498;
curr_coord.lng=127.105321;
//answer is dist(m)=8862.51 bearing=205.50
setDestination(dest_coord);
updateCurrentCoord(curr_coord);
calculateDistanceBearing();
//Serial.println(abs(_distance-8862.51));
if( (abs(_distance-8862.51)<0.01) ){
return true;
}
}