-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdeseqReport.Rmd.in
548 lines (446 loc) · 20.6 KB
/
deseqReport.Rmd.in
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
---
title: "PiGx-RNAseq - DESeq2 Report"
author: "BIMSB Bioinformatics Platform"
date: '`r format(as.POSIXct(if ("" != Sys.getenv("SOURCE_DATE_EPOCH")) { as.numeric(Sys.getenv("SOURCE_DATE_EPOCH")) } else { Sys.time() }, origin="1970-01-01"), "%Y-%m-%d %H:%M:%S")`'
params:
countDataFile: ''
colDataFile: ''
gtfFile: ''
description: ''
caseSampleGroups: ''
controlSampleGroups: ''
covariates: ''
prefix: ''
workdir: '.'
organism: ''
logo: ''
---
<style>
#logo
{
position: relative;
}
#logo img {
/*position: relative;*/
top: 25px;
/*right: 0px;*/
left: 50px;
position: fixed;
width: 125px;
}
body
{
position: absolute;
top: 150px;
}
</style>
<div id="logo" align="top">
```{r echo=FALSE}
knitr::include_graphics(params$logo)
```
</div>
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
knitr::opts_knit$set(root.dir = params$workdir)
library(ggplot2)
library(ggpubr)
library(ggrepel)
library(DESeq2)
library(DT)
library(pheatmap)
library(corrplot)
library(reshape2)
library(plotly)
library(scales)
library(crosstalk)
library(gprofiler2)
library(rtracklayer)
library(SummarizedExperiment)
# set default theme for graphics
ggplot2::theme_set(ggpubr::theme_pubclean())
```
# Description
```{r printAnalysisDescription, results='asis'}
if (!is.null(params$description)) {
cat(" \n")
cat(params$description)
cat(" \n")
cat(" \n")
}
```
PiGx RNAseq performs differential expression analysis using _DESeq2_, and produces this report. The report includes tables and figures summarizing similarities and differences between comparison groups as specified in the settings file. In addition to the differential expression analysis, there are plots and statistics for quality control of the experiment in general with an emphasis on the reproducibility of the sequencing results among the biological replicates.
This report was generated with PiGx RNAseq version @VERSION@.
# Input Settings
To reproduce the here presentined findings, consider rerunning the respective code blocks. These blocks need to be run in the order in which these appear in this file. It starts with the assignments made in the settings file for this analysis.
```{r useInputSettingsFromParamsList}
countDataFile <- params$countDataFile
colDataFile <- params$colDataFile
gtfFile <- params$gtfFile
description <- params$description
caseSampleGroups <- params$caseSampleGroups
controlSampleGroups <- params$controlSampleGroups
covariates <- params$covariates
prefix <- params$prefix
workdir <- params$workdir
organism <- gsub('\\s*', '', params$organism)
```
If the parameters list happens not to be available in the environment
you are executing this code, you may prefer to set these values directly:
```{r manualSettings,results='asis',echo = FALSE}
cat(paste("countDataFile <- \"", countDataFile, "\"",sep=""),
paste("colDataFile <- \"", colDataFile, "\"",sep=""),
paste("gtfFile <- \"", gtfFile, "\"",sep=""),
paste("caseSampleGroups <- \"", caseSampleGroups, "\"",sep=""),
paste("controlSampleGroups <- \"",controlSampleGroups,"\"",sep=""),
paste("covariates <- \"", covariates, "\"",sep=""),
paste("prefix <- \"", prefix, "\"",sep=""),
paste("workdir <- \"", workdir, "\"",sep=""),
paste("organism <- \"", organism, "\"",sep=""), sep=" \n")
```
```{r printInputSettings}
#whether to do GO analysis or not
runGO <- TRUE
#if organism is not provided, it is not possible to do GO analysis
if(organism == '') {
runGO <- FALSE
}
#create a folder to save high quality images generated by the report script
imagesDir <- file.path(workdir, paste0(prefix, '_images'))
if(! dir.exists(imagesDir)) {
dir.create(path = imagesDir)
}
inputParameterDesc <- c('Count Data File',
'Experiment Data File',
'GTF File',
'Case sample groups',
'Control sample groups',
'Covariates to control for',
'Prefix for output files',
'Working directory',
'Analyzed organism'
)
inputParameterValues <- c(countDataFile,
colDataFile,
gtfFile,
caseSampleGroups,
controlSampleGroups,
covariates,
prefix,
workdir,
organism)
inputSettings <- data.frame(parameters = inputParameterDesc,
values = inputParameterValues,
stringsAsFactors = FALSE)
DT::datatable(data = inputSettings,
extensions = 'FixedColumns',
options = list(fixedColumns = TRUE,
scrollX = TRUE,
pageLength = 9,
dom = 't'))
```
```{r prepare_inputs_import_GTF}
gtfData <- rtracklayer::import.gff(con = gtfFile, format = 'gtf')
caseSamples <- gsub("^\\s+|\\s+$", '', unlist(strsplit(x = caseSampleGroups, split = ',')))
controlSamples <- gsub("^\\s+|\\s+$", '', unlist(strsplit(x = controlSampleGroups, split = ',')))
covariates <- gsub("^\\s+|\\s+$", '', unlist(strsplit(x = covariates, split = ',')))
#read colData and countData files
colData = read.table(colDataFile, header=T, row.names = 1, sep='\t', stringsAsFactors = T, check.names = FALSE)
countData = read.table(countDataFile, header=TRUE, row.names=1, sep='\t', stringsAsFactors = T, check.names = FALSE)
#subset colData and countData - only keep case and control samples
colData <- colData[colData$group %in% c(caseSamples, controlSamples),]
countData <- subset(countData, select = rownames(colData))
#split samples as case/control for deseq
colData$AnalysisGroup <- 'Control'
colData[colData$group %in% caseSamples,]$AnalysisGroup <- 'Case'
```
```{r run_deseq2}
mapIdsToNames <- function(ids, gtfData) {
#first figure out if the given ids are transcript or gene ids
transcripts <- gtfData[gtfData$type == 'transcript']
df <- unique(data.frame('transcript_id' = transcripts$transcript_id,
'gene_id' = transcripts$gene_id,
'gene_name' = transcripts$gene_name, stringsAsFactors = FALSE))
m <- apply(head(df[,1:2], 1000), 2, function(x) sum(x %in% ids))
#then map the ids to gene names
if(m['transcript_id'] > m['gene_id']){
return(df[match(ids, df$transcript_id),]$gene_name)
} else {
return(df[match(ids, df$gene_id),]$gene_name)
}
}
if(length(covariates) > 0){
designFormula <- paste("~", paste(covariates, collapse = ' + '), "+ AnalysisGroup")
} else {
designFormula <- "~ AnalysisGroup"
}
require(DESeq2, quietly=TRUE)
message("design formula:", designFormula)
dds <- DESeq2::DESeqDataSetFromMatrix(countData = countData, colData = colData, design = stats::as.formula(designFormula))
dds <- dds[ rowSums(DESeq2::counts(dds)) > 1, ]
dds <- DESeq2::DESeq(dds)
norm.counts = DESeq2::counts(dds, normalized = TRUE)
DEtable = DESeq2::results(dds, contrast = c("AnalysisGroup", 'Case', 'Control'))
DEtable <- DEtable[order(DEtable$padj),]
DE <- as.data.frame(DEtable)
DE$geneName <- mapIdsToNames(rownames(DE), gtfData)
DEnormalizedCountsFile <- file.path(workdir, paste0(prefix, '.normalized_counts.tsv'))
write.table(x = norm.counts,
file = DEnormalizedCountsFile,
quote = FALSE, sep = '\t')
DEresultsFile <- file.path(workdir, paste0(prefix, '.deseq_results.tsv'))
write.table(x = DE,
file = DEresultsFile,
quote = FALSE, sep = '\t')
```
# Differential Expression Analysis
Differential expression (DE) analysis was done using the [DESeq2](https://bioconductor.org/packages/release/bioc/html/DESeq2.html) R package. First, read counts are transformed using a _variance stabilizing transformation_, and then the expression values of each gene is compared between the control and sample groups using a negative binomial distribution as a model.
## Differential Expression Results Table (top 1000)
This is the table of top 1000 differentially expressed genes comparing cases to controls (as specified in the input settings listed above). The table is first filtered by absolute log2foldChange > 1 and sorted by adjusted P value after multiple testing correction (`padj`). The `baseMean` refers to expression level in the controls, and the log fold change column denotes the expression in the cases, as compared to the control.
The full table of DESeq2 results and normalized counts tables can be found at:
- **DESeq2 results table**:
`r DEresultsFile`
- **DESeq2 normalized counts table**:
`r DEnormalizedCountsFile`
```{r write_DEtable}
DEsubset <- DE[!is.na(DE$padj) & DE$padj < 0.05,]
DEsubset <- DEsubset[order(DEsubset$padj),]
DT::datatable(DEsubset[1:min(nrow(DEsubset), 1000),],
extensions = c('Buttons', 'FixedColumns', 'Scroller'),
options = list(fixedColumns = TRUE,
scrollY = 400,
scrollX = TRUE,
scroller = TRUE,
dom = 'Bfrtip',
buttons = c('colvis', 'copy', 'print', 'csv','excel', 'pdf'),
columnDefs = list(
list(targets = c(3,4,5), visible = FALSE)
)),
filter = 'bottom'
)
```
# Diagnostic Plots
This section holds a number of plots meant for a quick diagnostic and/or sanity check of the analysis.
## Number of reads assigned to genes
This plot shows the number of reads, in each sample, that are assigned to genes/transcripts. Outlier samples may be faulty and should be examined.
```{r plot_readcounts}
require(ggplot2,quietly=TRUE)
require(ggrepel,quietly=TRUE)
readCounts <- as.data.frame(colSums(countData))
readCounts$group <- colData[rownames(readCounts),]$group
readCounts$sample <- rownames(readCounts)
colnames(readCounts)[1] <- 'readCounts'
quantiles <- quantile(readCounts$readCounts, c(1:20)/20)[c(1,5,15,19)]
p <- ggplot(readCounts, aes(x = sample, y = readCounts)) + geom_bar(aes(fill = group), stat = 'identity') +
geom_hline(yintercept = as.numeric(quantiles), color = 'red') +
geom_label_repel(data = data.frame(x = 0, y = as.numeric(quantiles)), aes(x = x, y = y, label = names(quantiles))) + theme(legend.position = 'bottom') + scale_y_continuous(labels = scales::comma) + coord_flip()
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'readcounts.pdf'))
print(p)
invisible(dev.off())
```
## p-value histogram
The P value distribution from the DE analysis. The expected shape depends on the expected difference / similarity between the controls and samples.
```{r plot_pvalhistogram}
p <- ggplot(data = DE, aes(x = pvalue)) + geom_histogram(bins = 100)
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'pvalue_histogram.pdf'))
print(p)
invisible(dev.off())
```
## MA plot
The MA plot gives an overview of the comparison between the two groups in the experiment. The log2 fold change for each gene is plotted on the y axis, against the average expression of that gene on the x axis.
```{r plot_MA}
DESeq2::plotMA(DEtable, main=paste("MA plot"))
#save image to folder
pdf(file = file.path(imagesDir, 'MA_plot.pdf'))
DESeq2::plotMA(DEtable, main=paste("MA plot"))
invisible(dev.off())
```
```{r computePCAplots}
plotGroups <- c(covariates, 'AnalysisGroup', 'group')
pcaPlots <- lapply(plotGroups, function(g) {
pca <- stats::prcomp(t(scale(log(norm.counts+1))), center = TRUE)
pcaSummary <- summary(pca)
df <- merge(as.data.frame(pca$x), colData, by = 'row.names')
ggplot(df, aes(x = PC1, y = PC2)) +
geom_point(aes_string(color = g)) +
geom_label_repel(aes(label = Row.names), size = 3) +
labs(x = paste0('PC1 (',round(pcaSummary$importance[2, 'PC1'] * 100, 1),'%)'),
y = paste0('PC2 (',round(pcaSummary$importance[2, 'PC2'] * 100, 1),'%)')) +
theme_bw()
})
#save image to folder
pdf(file = file.path(imagesDir, 'pcaPlots.pdf'))
for(p in pcaPlots){
print(p)
}
invisible(dev.off())
```
## PCA plots {.tabset}
The 2-dimensional principal component analysis plot shows which samples group together when plotted in a reduced dimension. The 2D PCA reduced dimension conserves as much of the variance in the dataset as is possible for any 2D embedding of the data. It provides a useful birds-eye view of the data and an intuition as to which factors may drive the differences between samples or groups.
```{r plotPCA, results='asis', echo = FALSE}
for (i in 1:length(pcaPlots)) {
cat("### ",plotGroups[i],"\n")
print(pcaPlots[[i]])
cat('\n\n')
}
```
## Correlation Plot
The pairwise correlation plot provides a more detailed view of which samples are more similar or different.
```{r plot_corr}
M <- stats::cor(norm.counts)
corrplot::corrplot(corr = M, order = 'hclust', method = 'square', type = 'lower', tl.srt = 45, addCoef.col = 'white')
#save image to folder
pdf(file = file.path(imagesDir, 'correlationPlot.pdf'))
corrplot::corrplot(corr = M, order = 'hclust', method = 'square', type = 'lower', tl.srt = 45, addCoef.col = 'white')
invisible(dev.off())
```
## Heatmaps
### Top 100 most highly variable genes
The heatmap below summarizes the experiment, and the apparent relationship between samples, based on the 100 highest variance genes. Each column is a sample, and each row is a gene. Both rows and columns are clustered using euclidean distance and complete linkage.
```{r plot_heatmap}
select <- na.omit(names(sort(apply(X = norm.counts, MARGIN = 1, FUN = var),decreasing = T))[1:100])
df <- as.data.frame(colData[,c("group","AnalysisGroup")])
pheatmap::pheatmap(norm.counts[select,],
cluster_rows=TRUE,
scale = 'row',
show_rownames=FALSE,
cluster_cols=TRUE,
annotation_col=df,
main = 'Heatmap of the Normalized Expression Values of \n Top 100 Genes with highest variance across samples')
#save image to folder
pheatmap::pheatmap(norm.counts[select,],
cluster_rows=TRUE,
scale = 'row',
show_rownames=FALSE,
cluster_cols=TRUE,
annotation_col=df,
filename = file.path(imagesDir, 'heatmap.pdf'),
main = 'Heatmap of the Normalized Expression Values of \n Top 100 Genes with highest variance across samples')
```
# Exploratory Plots and Tables
## Summary of up/down regulated genes - volcano plot
This volcano plot summarizes the differential expression landscape in the comparison between the two groups.
```{r plot_summary_volcano}
p <- ggplot(DE, aes(x = log2FoldChange, y = -log10(pvalue))) + geom_point(aes(color = padj < 0.1))
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'volcanoPlot.pdf'))
print(p)
invisible(dev.off())
```
## Summary of up/down regulated genes - bar plots
These bar plots summarizes the number of significantly upregulated/downregulated number of genes based on
different adjusted p-value (selected adjusted p-values are 0.001, 0.01, 0.05, and 0.1 - see facet headers) and log2 fold change thresholds (on the x-axis) used to define the significance levels.
```{r plot_summary_barplots}
filterUP <- function(df, log2fc = 1, p = 0.1) {nrow(df[df$log2FoldChange >= log2fc & !is.na(df$padj) & df$padj <= p,])}
filterDOWN <- function(df, log2fc = 1, p = 0.1) {nrow(df[df$log2FoldChange < -log2fc & !is.na(df$padj) & df$padj <= p,])}
pVals <- c(0.001, 0.01, 0.05, 0.1)
fcVals <- c(0:(max(DE$log2FoldChange)+1))
summary <- do.call(rbind, lapply(pVals, function(p) {
do.call(rbind, lapply(fcVals, function(f){
up <- filterUP(DE, f, p)
down <- filterDOWN(DE, f, p)
return(data.frame("log2FoldChange" = f, "padj" = p,
"upRegulated" = up, "downRegulated" = down))
}))
}))
require(reshape2,quietly=TRUE)
mdata <- reshape2::melt(summary, id.vars = c('log2FoldChange', 'padj'))
p <- ggplot(mdata, aes(x = log2FoldChange, y = value)) + geom_bar(aes(fill = variable), stat = 'identity', position = 'dodge') + facet_grid(~ padj) + theme(legend.position = 'bottom', legend.title = element_blank()) + labs(title = 'Number of differentially up/down regulated genes', subtitle = 'based on different p-value and log2foldChange cut-off values')
print(p)
#save image to folder
pdf(file = file.path(imagesDir, 'up_down_regulated_genes_summary.pdf'))
print(p)
invisible(dev.off())
```
## Interactive box plots of genes with significant differential expression
This interactive plot lets you see genes' position in the volcano plot, as well as their expression levels in the cases and the controls (in the box plot on the left side). Use the search box to find genes of interest. Notice that only top 1000 genes that have an adjusted p-value less than 0.1 and absolute log2 fold change value of greater than 1 are plotted.
```{r plot_interactive_boxplots}
require(plotly,quietly=TRUE)
require(crosstalk,quietly=TRUE)
select <- rownames(DEsubset)
if(length(select) > 1) {
expressionLevels <- reshape2::melt(norm.counts[select,])
colnames(expressionLevels) <- c('geneId', 'sampleName', 'expressionLevel')
expressionLevels$group <- colData[expressionLevels$sampleName,]$group
expressionLevels$AnalysisGroup <- colData[expressionLevels$sampleName,]$AnalysisGroup
matchIds <- match(expressionLevels$geneId, rownames(DE))
expressionLevels$padj <- DE[matchIds,]$padj
expressionLevels$log2FoldChange <- DE[matchIds,]$log2FoldChange
sd <- crosstalk::SharedData$new(expressionLevels, ~geneId)
lineplot <- plot_ly(sd, x = ~sampleName, y = ~expressionLevel) %>%
plotly::group_by(geneId) %>%
plotly::add_lines(text = ~geneId, hoverinfo = "text", color = ~AnalysisGroup)
volcanoPlot <- plot_ly(sd, x = ~log2FoldChange, y = ~-log10(padj)) %>%
plotly::add_markers(text = ~geneId, hoverinfo = "text")
subplot(
plot_ly(sd, y = ~expressionLevel, color = ~AnalysisGroup) %>%
plotly::add_boxplot(),
volcanoPlot
) %>% plotly::highlight(on = 'plotly_click', off = 'plotly_doubleclick', selectize = TRUE)
} else {
cat("Couldn't detect at least two genes satisfying the p-value and fold change thresholds\n")
}
```
```{r results='asis'}
if(runGO == FALSE) {
cat("Warning:Skipping GO analysis because `organism` option is not set in settings.yaml file\n")
} else if (curl::has_internet() == FALSE){
#gprofiler2 tool needs internet access to work. So, go analysis module is conditional
runGO <- FALSE
cat("Warning:Skipping GO analysis as there is no internet connection to query https://biit.cs.ut.ee/gprofiler/\n")
}
```
```{r goAnalysisTitle, eval = runGO, results='asis', echo=FALSE}
cat("# GO Term Enrichment Analysis\n")
cat("\n The following table list GO terms for differentially expressed genes. GO term analysis was carried out using [g:Profiler](https://cran.r-project.org/web/packages/gprofiler2/) R package. Differentially expressed genes are defined as those genes with adjusted p-value of less than 0.1.")
```
```{r goAnalysis, eval = runGO}
#filter genes for differential expression
DEgenes <- rownames(DE[!is.na(DE$padj) & DE$padj < 0.05,])
go <- NULL
#search for enriched GO terms within the GO and pathway domains
if(length(DEgenes) > 0) {
require(gprofiler2,quietly=TRUE)
go <- gprofiler2::gost(query = DEgenes,
organism = organism,
significant = TRUE,
sources = c('GO', 'KEGG', 'REAC', 'CORUM'))
}
if(!is.null(go)) {
goResults <- go[['result']]
#order by p-value
goResults <- goResults[order(goResults$p_value),]
goResults <- subset(goResults, select = c('p_value', 'term_size', 'query_size',
'intersection_size', 'precision', 'recall',
'term_id', 'source', 'term_name',
'effective_domain_size', 'source_order'))
#save full GO term table to disk
goResultsFile <- file.path(workdir, paste0(prefix, '.GOterms.tsv'))
write.table(x = goResults,
file = goResultsFile,
quote = FALSE, sep = '\t')
#only display top GO terms in the HTML report.
max <- ifelse(nrow(goResults) > 1000, 1000, nrow(goResults))
DT::datatable(goResults[1:max,],
extensions = c('Buttons', 'FixedColumns', 'Scroller'),
options = list(fixedColumns = TRUE,
scrollY = 400,
scrollX = TRUE,
scroller = TRUE,
dom = 'Bfrtip',
buttons = c('colvis', 'copy', 'print', 'csv','excel', 'pdf')
),
filter = 'bottom'
)
} else {
cat("Warning: Couldn't detect any enriched functional terms\n")
}
```
# Session Information
```{r sessionInfo}
sessionInfo()
```