-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow.py
92 lines (76 loc) · 3.18 KB
/
tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
#from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import logging
logging.getLogger('tensorflow').disabled = True
from google_images_download import google_images_download #importing the library
def print_sep():
print("--------------------------------------")
def fashion():
fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
# Training Testing Data Shape... #
print_sep()
print("What the Train Images look like: ")
print(train_images.shape)
print("What that the Train Labels Look Like:")
print(train_labels)
print("What the test images look like: ")
print(test_images.shape)
print_sep()
print("Format of data is like a slice. (Samples, Width, Height)")
print_sep()
"""
#Pre Processing Data
plt.figure() #create figure object
plt.imshow(train_images[1]) #show the first image in the set
plt.colorbar() #create colour bar
plt.grid(False) #no grid
plt.show() # show the figure
"""
# scale images to range 0 to 1 by dividing by 255
train_images = train_images / 255.0
test_images = test_images / 255.0
# display the first 25 images from the training set and dusplay clas sname below the image
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])
"""
plt.show()
"""
# setting up the layers by
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)), #flattening 2d array (24x24) to 1d (784) pixels
keras.layers.Dense(128, activation=tf.nn.relu), #dense neural layer 128 nodes
keras.layers.Dense(10, activation=tf.nn.softmax) # 10 node softmax layer, that returns array of 10 probability scores
])
# each of the 10 nodes in the last layers represent a probability of the test image belonging to one of the classes
# compliing the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# model training
model.fit(train_images, train_labels, epochs=5)
#a step in training is one gradient update, an epoch is one batch of steps
# evaluating accuracy
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
print_sep()
# PREDICTIONS
predictions = model.predict(test_images)
#Here, the model has predicted the label for each image in the testing set. Let's take a look at the first prediction:
print(predictions[0])
print_sep()
print("Lets predict... ")
predicted_label = (np.argmax(predictions[0])) #get the maximum probability of the image belonging to a specific class
print(class_names[predicted_label])