-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
204 lines (175 loc) · 6.11 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# app.py
import os
import streamlit as st
import requests
import speech_recognition as sr
from dotenv import load_dotenv
from openai import AzureOpenAI
from src.lib.event_handler import StreamlitEventHandler
from src.lib.assistant import AIAssistant
from src.lib.tools_bigquery import (
GetDBSchema as GetDBSchemaBigQuery,
RunSQLQuery as RunSQLQueryBigQuery,
ListTables as ListTablesBigQuery,
FetchDistinctValues as FetchDistinctValuesBigQuery,
FetchSimilarValues as FetchSimilarValuesBigQuery,
)
from src.lib.tools_postgres import (
GetDBSchema as GetDBSchemaPostgres,
RunSQLQuery as RunSQLQueryPostgres,
ListTables as ListTablesPostgres,
FetchDistinctValues as FetchDistinctValuesPostgres,
FetchSimilarValues as FetchSimilarValuesPostgres,
)
from src.lib.tools_search import FetchSimilarQueries
# Load environment variables
load_dotenv()
# Initialize the tools and instructions based on the database parameter
def initialize_tools_and_instructions(database):
if database == "bigquery":
functions = [
GetDBSchemaBigQuery(),
RunSQLQueryBigQuery(),
FetchDistinctValuesBigQuery(),
FetchSimilarValuesBigQuery(),
ListTablesBigQuery(),
FetchSimilarQueries(),
]
instructions_path = os.path.join(
os.path.dirname(__file__),
"src",
"instructions",
"instructions_bigquery.jinja2",
)
elif database == "postgresql":
functions = [
GetDBSchemaPostgres(),
RunSQLQueryPostgres(),
FetchDistinctValuesPostgres(),
FetchSimilarValuesPostgres(),
ListTablesPostgres(),
FetchSimilarQueries(),
]
instructions_path = os.path.join(
os.path.dirname(__file__),
"src",
"instructions",
"instructions_postgres.jinja2",
)
else:
raise ValueError("Unsupported database type. Choose either 'bigquery' or 'postgresql'.")
tools = [{"type": "function", "function": f.to_dict()} for f in functions]
instructions = open(instructions_path).read()
return functions, tools, instructions
def initialize_assistant(database):
# Initialize tools and instructions based on the database parameter
functions, tools, instructions = initialize_tools_and_instructions(database)
# Create an Azure OpenAI client
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
)
# Get the model
model = os.getenv("AZURE_OPENAI_MODEL_NAME")
# Create an AI Assistant
assistant = AIAssistant(
client=client,
verbose=True,
name="AI Assistant",
description="An AI Assistant",
instructions=instructions,
model=model,
tools=tools,
functions=functions,
)
return assistant
# Set the page title and icon
st.set_page_config(page_title="BigAssistant", page_icon="🕵️")
# Get the database parameter from the query string
database = st.sidebar.selectbox('What is your database?',
['postgresql', 'bigquery'])
# Initialize the assistant
assistant = initialize_assistant(database)
# Apply custom CSS
st.markdown(
"""
<style>
#MainMenu {visibility: hidden}
#header {visibility: hidden}
#footer {visibility: hidden}
.block-container {
padding-top: 3rem;
padding-bottom: 2rem;
padding-left: 3rem;
padding-right: 3rem;
}
</style>
""",
unsafe_allow_html=True
)
# Initialize the questions list
if "prompt" not in st.session_state:
st.session_state.questions = []
# UI
st.subheader("🔮 Chat with your Data Assistant")
st.markdown(
"You can ask questions about your data and get answers in real-time.",
)
# Local history
if "messages" not in st.session_state:
st.session_state.messages = []
if "thread_id" not in st.session_state:
thread = assistant.create_thread()
st.session_state.thread_id = thread.id
st.session_state.assistant_id = assistant.assistant_id
if "text_boxes" not in st.session_state:
st.session_state.text_boxes = []
# Speech-to-Text functionality using Azure Cognitive Services
def recognize_speech():
subscription_key = os.getenv("AZURE_SPEECH_KEY")
region = os.getenv("AZURE_SPEECH_REGION")
endpoint = f"https://{region}.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1"
recognizer = sr.Recognizer()
with sr.Microphone() as source:
st.info("Listening...")
audio = recognizer.listen(source)
audio_data = audio.get_wav_data()
headers = {
"Ocp-Apim-Subscription-Key": subscription_key,
"Content-Type": "audio/wav; codecs=audio/pcm; samplerate=16000",
}
response = requests.post(endpoint, headers=headers, data=audio_data)
if response.status_code == 200:
result = response.json()
text = result["DisplayText"]
st.success(f"Recognized: {text}")
return text
else:
st.error(f"Error: {response.json()}")
return ""
# Add a button to record audio
if st.button("Record Audio"):
prompt = recognize_speech()
else:
prompt = st.chat_input("Ask me a question about your dataset")
if prompt:
st.session_state.messages.append(
{"role": "user", "items": [{"type": "text", "content": prompt}]}
)
st.session_state.text_boxes.append(st.empty())
st.session_state.text_boxes[-1].success(f"**> 🤔 User:** {prompt}")
assistant.create_message(
thread_id=st.session_state.thread_id,
role="user",
question=prompt
)
# Create the event handler
event_handler = StreamlitEventHandler(st.session_state.text_boxes, verbose=False)
# Make a request to the Flask server
assistant.create_response_with_handler(
question=prompt,
event_handler=event_handler,
thread_id=st.session_state.thread_id,
verbose=True,
)