-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFacialKeypointEditor2.py
370 lines (325 loc) · 14.4 KB
/
FacialKeypointEditor2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import pygame
import facial_keypoints_detecter as fkd
import matplotlib.pyplot as plt
import cv2
from torchvision.utils import save_image
import torch
import numpy as np
import xlsxwriter
from PIL import Image
import shutil
from time import time
import os
def resize(path, basewidth):
#basewidth = 300
if not os.path.exists('./xlsxCache/'):
os.makedirs('./xlsxCache/')
img = Image.open(path)
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.LANCZOS)
#imgFormat = path.split("/")[0]
imgFormat = path.split(".")[-1]
imgPath = './xlsxCache/' + str(time()).replace(".","") +"."+ imgFormat
img.save(imgPath)
return imgPath
def clearCache():
if os.path.exists('./xlsxCache/'):
shutil.rmtree('./xlsxCache')
pygame.init()
def FacialKeyPointEditor(img_path):
DEFAULT_FIGSIZE,DEFAULT_PREPROCESS_SIZE_RANDOMCROP,DEFAULT_PREPROCESS_SIZE_RANDOMCROP,DEFAULT_PREPROCESS_SCALING_SQRT,DEFAULT_PREPROCESS_SCALING_MEAN = (3.33, 224, 224, 50.0, 100.0)
def getxy(file_image
, file_model = "default"
):
figsizeScale = DEFAULT_FIGSIZE
faces = net.apps.detect_faces(file_image)
print(faces[0].tolist())
# Loading in color image for face detection >>
image_bgr = cv2.imread(file_image)
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
'''# Loading model if file_model is provided >>
if file_model != "default":
self.load_model(file_model)
# else:
# self.load_model(DEFAULT_FILE_FKD_NET_MODEL)
self.eval()'''
image = np.copy(image_rgb)
# Including a padding to extract face as HAAR classifier's bounding box, crops sections of the face
images, keypoints = [], []
# Looping over the detected faces >>
len_faces = len(faces)
fig, axes = plt.subplots(1, len_faces, figsize = (len_faces*figsizeScale*DEFAULT_FIGSIZE, figsizeScale*DEFAULT_FIGSIZE))
for i, (x,y,w,h) in enumerate(faces):
#print([x,y,w,h]) xyWidhtHeight of box to detect face
# Selecting the region of interest that is the face in the image >>
helf_width_roi = int(max(w,h)*0.35)
# roi = image[ max(y-padding, 0) : y+h+padding
# , max(x-padding, 0) : x+w+padding ]
roi = image[ max(y-helf_width_roi, 0) : y+h+helf_width_roi
, max(x-helf_width_roi, 0) : x+w+helf_width_roi ]
# Rescaling the detected face to be the expected square size for CNN >>
roi_rescaled = cv2.resize(roi, (DEFAULT_PREPROCESS_SIZE_RANDOMCROP, DEFAULT_PREPROCESS_SIZE_RANDOMCROP))
# Converting the face region from RGB to grayscale >>
roi_gray = cv2.cvtColor(roi_rescaled, cv2.COLOR_RGB2GRAY)
# Normalizing the grayscale image so that its color range falls in [0,1] instead of [0,255] >>
roi_normed = (roi_gray / 255.0 ).astype(np.float32)
roi_normed_rgb = (roi_rescaled / 255.0 ).astype(np.float32)
# Reshaping the numpy image shape (H x W x C) into a torch image shape (C x H x W) >>
roi = roi_normed
if len(roi.shape) == 2:
roi = roi.reshape(roi.shape[0], roi.shape[1], 1)
roi_transposed = roi.transpose((2, 0, 1))
roi_transposed_rgb = roi_normed_rgb
# Converting to torch array >>
roi_torch = torch.from_numpy(roi_transposed)
roi_torch_rgb = torch.from_numpy(roi_transposed_rgb)
images.append(roi_torch_rgb)
output_pts = net.forward(roi_torch)
keypoints.append(output_pts)
# Displaying each detected face and the corresponding keypoints >>
#if plot_enabled:
# plot_output(roi_torch, output_pts)
axes_curr = axes if len_faces == 1 else axes[i]
key_pts_pred = output_pts.data
key_pts_pred = key_pts_pred.numpy()
# Undoing normalization of keypoints >>
key_pts_pred = key_pts_pred[0]*DEFAULT_PREPROCESS_SCALING_SQRT + DEFAULT_PREPROCESS_SCALING_MEAN
#print(key_pts_pred.tolist())
#print(dir(key_pts_pred))
#plot_keypoints(image = roi_transposed_rgb, keypoints_pred = key_pts_pred, cmap = "gray", axes = axes_curr)
#plt.show()
plt.close()
return roi_transposed_rgb, key_pts_pred.tolist()
#img_path = './Trash/Iman/Camera.png'
net = fkd.model.Net()
net.load_model('saved_model_facial_keypoints_detector.pt')
image, data = getxy(img_path)
xPlots = []
yPlots = []
im = Image.fromarray((image*255).astype(np.uint8))
im.save("FacialKeypointEditorCache.png")
screen = pygame.display.set_mode((700,700), pygame.RESIZABLE)
#print(pygame.display.get_driver())
pygame.display.set_caption('Facial Keypoint Editor')
pygame.display.flip()
face = net.apps.detect_faces("FacialKeypointEditorCache.png").tolist()[0]
data.append([face[0]+(face[2]/2),face[1]])
for items in data:
#print(items)
xPlots.append(items[0])
yPlots.append(items[1])
#print(face)
imgy = pygame.image.load("FacialKeypointEditorCache.png")
Zoom = 200
zoomX = imgy.get_width()/100*Zoom
zoomY = imgy.get_width()/100*Zoom
img1 = pygame.transform.scale(imgy,(zoomX,zoomY))
for items in data:
pass
color = (255,0,0)
color2 = (0,0,255)
# Variable to keep our game loop running
running = True
offsetX = 0
offsetY = pygame.display.get_surface().get_size()[1]*0.1
mouseOrigin = []
def drawMenu(zoom):
w, h = pygame.display.get_surface().get_size()
pygame.draw.rect(screen, (0,0,255), pygame.Rect(0,0,w, h*0.1))
font = pygame.font.Font('freesansbold.ttf', 20)
zoomBtnW, zoomBtnH = font.size("ResetZoom")
pygame.draw.rect(screen, (255,0,0), pygame.Rect((w*0.15)-(zoomBtnW/1.5),(h*0.1*0.5)-(zoomBtnH/1.5),zoomBtnW*1.35, zoomBtnH*1.5))
zoomBtn = font.render("Reset Zoom",True,(255,255,255))
zoomRect = zoomBtn.get_rect()
zoomRect.center = (w*0.15,h*0.1*0.5)
screen.blit(zoomBtn,zoomRect)
saveBtnW, saveBtnH = font.size("Save")
pygame.draw.rect(screen, (0,255,0), pygame.Rect((w*0.35)-(saveBtnW/1.5),(h*0.1*0.5)-(saveBtnH/1.5),saveBtnW*1.35, saveBtnH*1.5))
saveBtn = font.render("Save",True,(255,255,255))
saveRect = saveBtn.get_rect()
saveRect.center = (w*0.35,h*0.1*0.5)
screen.blit(saveBtn,saveRect)
ZoomW, ZoomH = font.size("Zoom: "+str(zoom)+"%")
Zoom = font.render("Zoom: "+str(zoom)+"%",True,(255,255,255))
ZoomRect = Zoom.get_rect()
ZoomRect.center = (ZoomW/2,ZoomH/2)
screen.blit(Zoom,ZoomRect)
return pygame.Rect((w*0.15)-(zoomBtnW/1.5),(h*0.1*0.5)-(zoomBtnH/1.5),zoomBtnW*1.35, zoomBtnH*1.5), pygame.Rect((w*0.35)-(saveBtnW/1.5),(h*0.1*0.5)-(saveBtnH/1.5),saveBtnW*1.35, saveBtnH*1.5)
# game loop
while running:
font = pygame.font.Font('freesansbold.ttf', round(3/100*Zoom))
screen.blit(img1, (offsetX, offsetY))
pygame.draw.rect(screen, color, pygame.Rect(face[0]/100*Zoom+offsetX,face[1]/100*Zoom+offsetY,face[2]/100*Zoom,face[3]/100*Zoom), 5)
if pygame.mouse.get_pressed()[1]:
if mouseOrigin == []:
mouseOrigin = [0,0]
mouseOrigin[0], mouseOrigin[1] = pygame.mouse.get_pos()
mouseOrigin[0] -= offsetX
mouseOrigin[1] -= offsetY
else:
x, y = pygame.mouse.get_pos()
offsetX = x - mouseOrigin[0]
offsetY = y - mouseOrigin[1]
else:
mouseOrigin = []
count = 1
for point in data:
text = font.render(str(count), True, color2)
text_width, text_height = font.size(str(count))
xPlot = point[0]/100*Zoom +offsetX
yPlot = point[1]/100*Zoom +offsetY
Radius = 1/100*Zoom
textRect = text.get_rect()
textRect.center = (xPlot-text_width,yPlot-text_height)
screen.blit(text, textRect)
x, y = pygame.mouse.get_pos()
if (x > (xPlot - Radius)) and (x < (xPlot + Radius)) and (y > (yPlot - Radius)) and (y < (yPlot + Radius)):
pygame.draw.circle(screen, color2, (xPlot,yPlot),Radius+1)
while pygame.mouse.get_pressed()[0]:
screen.fill((0,0,0))
x, y = pygame.mouse.get_pos()
x -= offsetX
y -= offsetY
point[0]= x/Zoom*100
point[1]= y/Zoom*100
screen.blit(img1, (offsetX, offsetY))
text = font.render(str(count), True, color2)
text_width, text_height = font.size(str(count))
xPlot = point[0]/100*Zoom +offsetX
yPlot = point[1]/100*Zoom +offsetY
Radius = 1/100*Zoom
textRect = text.get_rect()
textRect.center = (xPlot-text_width,yPlot-text_height)
screen.blit(text, textRect)
pygame.draw.circle(screen, color2, (xPlot,yPlot),Radius+3)
drawMenu(Zoom)
pygame.display.flip()
for event in pygame.event.get():
# Check for QUIT event
if event.type == pygame.QUIT:
running = False
else:
pygame.draw.circle(screen, color2, (xPlot,yPlot),Radius)
count += 1
zoomBtn, saveBtn = drawMenu(Zoom)
if zoomBtn.collidepoint(pygame.mouse.get_pos()) and pygame.mouse.get_pressed()[0]:
Zoom = 200
offsetX = 0
offsetY = pygame.display.get_surface().get_size()[1]*0.1
zoomX = imgy.get_width()/100*Zoom
zoomY = imgy.get_width()/100*Zoom
screen.fill((0,0,0))
img1 = pygame.transform.scale(imgy,(zoomX,zoomY))
elif saveBtn.collidepoint(pygame.mouse.get_pos()) and pygame.mouse.get_pressed()[0]:
running = False
else:
pygame.display.flip()
# for loop through the event queue
for event in pygame.event.get():
screen.fill((0,0,0))
# Check for QUIT event
if event.type == pygame.QUIT:
running = False
# Chck for scrollWheel
if event.type == pygame.MOUSEWHEEL:
Zoom += event.y*10
zoomX = imgy.get_width()/100*Zoom
zoomY = imgy.get_width()/100*Zoom
img1 = pygame.transform.scale(imgy,(zoomX,zoomY))
pygame.display.quit()
os.remove("FacialKeypointEditorCache.png")
xPlots = []
yPlots = []
for items in data:
#print(items)
xPlots.append(items[0])
yPlots.append(items[1])
fig, ax = plt.subplots()
ax.imshow(image, extent=[0, 223.5, 223.5, 0], cmap="gray")
plt.scatter(xPlots,yPlots)
plt.show()
return image, data
# Workbook() takes one, non-optional, argument
# which is the filename that we want to create.
workbook = xlsxwriter.Workbook('Output.xlsx')
# The workbook object is then used to add new
# worksheet via the add_worksheet() method.
worksheet = workbook.add_worksheet()
worksheet.set_default_row(hide_unused_rows=True)
worksheet.set_cols.setdefault(1)
# Use the worksheet object to write
# data via the write() method.
heading_format = workbook.add_format({
'bold': 1,
'align': 'center',
'valign': 'vcenter'})
data_format = workbook.add_format({
'align': 'left',
'valign': 'vcenter'})
data_format.set_text_wrap()
worksheet.merge_range('A1:A2', 'Name', heading_format)
worksheet.merge_range('B1:B2', 'Original Image', heading_format)
worksheet.merge_range('C1:C2', 'Original Image After Auto Crop', heading_format)
worksheet.merge_range('D1:D2', 'Original AI Scan', heading_format)
worksheet.merge_range('E1:E2', 'Scan After Refinements', heading_format)
worksheet.set_column('A:A', 36)
worksheet.set_column('B:B', 45)
worksheet.set_column('C:C', 32)
worksheet.set_column('D:D', 32)
worksheet.set_column('E:E', 32)
data_format = workbook.add_format({
'align': 'center',
'valign': 'vcenter'})
data_format.set_text_wrap()
n = 5
count = 1
while count <= 69:
worksheet.merge_range(0,n,0,n+1, 'Keypoint '+str(count), heading_format)
#worksheet.set_column(1,n, 16)
#worksheet.set_column(1,n+1, 16)
worksheet.write(1,n,'X-Axis', heading_format)
worksheet.write(1,n+1,'Y-Axis', heading_format)
count += 1
n += 2
directory = next(os.walk('./cv2Capture'))[1]
directory.sort(key=lambda x: int(''.join(filter(str.isdigit, x))))# Taken from https://stackoverflow.com/questions/36259763/sort-list-of-string-based-on-number-in-string
print(len(directory))
count = 2
for file in directory:
print(file)
worksheet.set_row(count, 180)
worksheet.write(count,0,file, data_format)
worksheet.insert_image(count,1, resize('./cv2Capture/'+file+'/Camera.png',320))
worksheet.insert_image(count,3, resize('./cv2Capture/'+file+'/Graph.png',224))
image, data = FacialKeyPointEditor('./cv2Capture/'+file+'/Camera.png')
fig, ax = plt.subplots()
ax.imshow(image, extent=[0, 223.5, 223.5, 0])
xPlots = []
yPlots = []
allData = []
for items in data:
xPlots.append(items[0])
yPlots.append(items[1])
allData.append(items[0])
allData.append(items[1])
plt.scatter(xPlots,yPlots)
if not os.path.exists('./FacialKeypointEditorCache(Fig)/'):
os.makedirs('./FacialKeypointEditorCache(Fig)/')
if not os.path.exists('./FacialKeypointEditorCache(Img)/'):
os.makedirs('./FacialKeypointEditorCache(Img)/')
figPath = "./FacialKeypointEditorCache(Fig)/"+str(time()).replace(".","")+".png"
imgPath = "./FacialKeypointEditorCache(Img)/"+str(time()).replace(".","")+".png"
plt.savefig(figPath)
plt.close()
im = Image.fromarray((image*255).astype(np.uint8))
im.save(imgPath)
worksheet.insert_image(count,2, resize(imgPath,224))
worksheet.insert_image(count,4, resize(figPath,224))
n = 5
for points in allData:
worksheet.write(count,n,points, data_format)
n += 1
count += 1
#worksheet.save()
workbook.close()