forked from chenyuntc/PyTorchText
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain-all.1.py
executable file
·180 lines (151 loc) · 8.54 KB
/
main-all.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#coding:utf8
from config import opt
import models
import os
import tqdm
from data.dataset import ZhihuData,ZhihuALLData
import torch as t
import time
import fire
import torchnet as tnt
from torch.utils import data
from torch.autograd import Variable
from utils.visualize import Visualizer
from utils import get_score#,get_optimizer
vis = Visualizer(opt.env)
'''
直接训练最好模型的attention stack
'''
def hook():pass
def val(model,dataset):
dataset.train(False)
model.eval()
dataloader = data.DataLoader(dataset,
batch_size = opt.batch_size,
shuffle = False,
num_workers = opt.num_workers,
pin_memory = True
)
predict_label_and_marked_label_list=[]
for ii,((title,content),label) in tqdm.tqdm(enumerate(dataloader)):
title,content,label = (Variable(title[0].cuda()),Variable(title[1].cuda())),(Variable(content[0].cuda()),Variable(content[1].cuda())),Variable(label.cuda())
score = model(title,content)
# !TODO: 优化此处代码
# 1. append
# 2. for循环
# 3. topk 代替sort
predict = score.data.topk(5,dim=1)[1].cpu().tolist()
true_target = label.data.float().topk(5,dim=1)#[1].cpu().tolist()#sort(dim=1,descending=True)
true_index=true_target[1][:,:5]
true_label=true_target[0][:,:5]
tmp= []
for jj in range(label.size(0)):
true_index_=true_index[jj]
true_label_=true_label[jj]
true=true_index_[true_label_>0]
tmp.append((predict[jj],true.tolist()))
predict_label_and_marked_label_list.extend(tmp)
del score
dataset.train(True)
model.train()
scores,prec_,recall_,_ss=get_score(predict_label_and_marked_label_list)
return (scores,prec_,recall_,_ss)
def main(**kwargs):
#动态加全职衰减
opt.parse(kwargs,print_=False)
if opt.debug:import ipdb;ipdb.set_trace()
# opt.model_names=['MultiCNNTextBNDeep','RCNN','LSTMText','CNNText_inception','RCNN','CNNText_inception','LSTMText']
# opt.model_paths = ['checkpoints/MultiCNNTextBNDeep_word_0.41124002492','checkpoints/RCNN_word_0.411511574999','checkpoints/LSTMText_word_0.411994005382','checkpoints/CNNText_tmp_char_0.402429167301','checkpoints/RCNN_char_0.403710422571','checkpoints/CNNText_tmp_word_0.41096749885','checkpoints/LSTMText_char_0.403192339135',]#'checkpoints/FastText_word_0.400391584867']
##################iMultiModelAll2_word_0.425600838271################
# opt.model_names=['MultiCNNTextBNDeep','RCNN','LSTMText','RCNN','CNNText_inception']
# opt.model_paths = ['checkpoints/MultiCNNTextBNDeep_word_0.41124002492','checkpoints/RCNN_word_0.411511574999','checkpoints/LSTMText_word_0.411994005382','checkpoints/RCNN_char_0.403710422571','checkpoints/CNNText_tmp_char_0.402429167301']
#####-------------------------------------------------------#####
#############################################################
# opt.model_names=['MultiCNNTextBNDeep','RCNN','LSTMText','RCNN','CNNText_inception']
# opt.model_paths = ['checkpoints/MultiCNNTextBNDeep_0.37125473788','checkpoints/RCNN_word_0.373609030286','checkpoints/LSTMText_word_0.381833388089','checkpoints/RCNN_char_0.3456599248','checkpoints/CNNText_tmp_0.352036505041']
#####-------------------------------------------------------#####
# opt.model_names=['LSTMText','MultiCNNTextBNDeep']
# opt.model_paths=['checkpoints/LSTMText_word_0.396765494482','checkpoints/MultiCNNTextBNDeep_word_0.391018392216']
# opt.fold=1
# from data.dataset import ALLFoldData as ZhihuALLData
########################################################################
# opt.model_names=['MultiCNNTextBNDeep','RCNN','LSTMText','RCNN','CNNText_inception']
# opt.model_paths = ['checkpoints/MultiCNNTextBNDeep_0.37125473788','checkpoints/RCNN_word_0.373609030286','checkpoints/LSTMText_word_0.381833388089','checkpoints/RCNN_char_0.3456599248','checkpoints/CNNText_tmp_0.352036505041']
#######################################0.41884129858126845-force#####################
# opt.model_names=['MultiCNNTextBNDeep','RCNN','LSTMText','RCNN','MultiCNNTextBNDeep']
# opt.model_paths = ['checkpoints/MultiCNNTextBNDeep_word_0.410011182415','checkpoints/RCNN_word_0.413446202556','checkpoints/LSTMText_word_0.413681107036','checkpoints/RCNN_char_0.398655349075','checkpoints/MultiCNNTextBNDeep_char_0.38666657051']
#######################################################################
#############################################MultiModelallfast_0.419088#####################################
opt.model_names=['MultiCNNTextBNDeep','FastText3','LSTMText','CNNText_inception']
opt.model_paths = ['checkpoints/MultiCNNTextBNDeep_word_0.41124002492','checkpoints/FastText3_word_0.40810787337','checkpoints/LSTMText_word_0.413681107036','checkpoints/CNNText_tmp_char_0.402429167301'
########################################################################################3
model = getattr(models,opt.model)(opt).cuda()
if opt.model_path:
model.load(opt.model_path)
print(model)
opt.parse(kwargs,print_=True)
vis.reinit(opt.env)
pre_loss=1.0
lr,lr2=opt.lr,opt.lr2
loss_function = getattr(models,opt.loss)()
if opt.all:dataset = ZhihuALLData(opt.train_data_path,opt.labels_path,type_=opt.type_,augument=opt.augument)
# else :dataset = ZhihuData(opt.train_data_path,opt.labels_path,type_=opt.type_)
dataloader = data.DataLoader(dataset,
batch_size = opt.batch_size,
shuffle = opt.shuffle,
num_workers = opt.num_workers,
pin_memory = True
)
optimizer = model.get_optimizer(opt.lr,opt.lr2)
loss_meter = tnt.meter.AverageValueMeter()
score_meter=tnt.meter.AverageValueMeter()
best_score = 0
# pre_score = 0
for epoch in range(opt.max_epoch):
loss_meter.reset()
score_meter.reset()
for ii,((title,content),label) in tqdm.tqdm(enumerate(dataloader)):
title,content,label = (Variable(title[0].cuda()),Variable(title[1].cuda())),(Variable(content[0].cuda()),Variable(content[1].cuda())),Variable(label.cuda())
optimizer.zero_grad()
score = model(title,content)
loss = loss_function(score,label.float())
loss_meter.add(loss.data[0])
loss.backward()
optimizer.step()
if ii%opt.plot_every ==opt.plot_every-1:
if os.path.exists(opt.debug_file):
import ipdb
ipdb.set_trace()
predict = score.data.topk(5,dim=1)[1].cpu().tolist()#(dim=1,descending=True)[1][:,:5].tolist()
true_target = label.data.float().topk(5,dim=1)#[1].cpu().tolist()#sort(dim=1,descending=True)
true_index=true_target[1][:,:5]
true_label=true_target[0][:,:5]
predict_label_and_marked_label_list=[]
for jj in range(label.size(0)):
true_index_=true_index[jj]
true_label_=true_label[jj]
true=true_index_[true_label_>0]
predict_label_and_marked_label_list.append((predict[jj],true.tolist()))
score_,prec_,recall_,_ss=get_score(predict_label_and_marked_label_list)
score_meter.add(score_)
vis.vis.text('prec:%s,recall:%s,score:%s,a:%s' %(prec_,recall_,score_,_ss),win='tmp')
vis.plot('scores', score_meter.value()[0])
vis.plot('loss', loss_meter.value()[0])
if ii%opt.decay_every == opt.decay_every-1:
del loss
scores,prec_,recall_ ,_ss= val(model,dataset)
vis.log({' epoch:':epoch,' lr: ':lr,'scores':scores,'prec':prec_,'recall':recall_,'ss':_ss,'scores_train':score_meter.value()[0],'loss':loss_meter.value()[0]})
if scores>best_score:
best_score = scores
best_path = model.save(name = str(scores),new=True)
if scores < best_score:
model.load(best_path,change_opt=False)
lr = lr * opt.lr_decay
if lr2==0:lr2=1e-4
else : lr2 = lr2*0.5
optimizer = model.get_optimizer(lr,lr2,0)
pre_loss = loss_meter.value()[0]
loss_meter.reset()
score_meter.reset()
if __name__=="__main__":
fire.Fire()