-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01-simple-linear-regression.qmd
309 lines (248 loc) · 6.14 KB
/
01-simple-linear-regression.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
---
title: "Simple Linear Regression Lecture Notes"
date: 2024/01/25
---
Below are the lecture notes, based on the slides, for the first Simple Linear Regression lecture. Following these notes are draft lecture notes for subsequent lectures.
{{< include simple-linear-regression-slides-1.qmd >}}
## Outline for Subsequent Lectures in Simple Linear Regression
### Assumptions of Simple Regression
::: incremental
1. Linear function between x and y
2. Independence of errors
3. Normality of errors
4. Equality of error variances
:::
::: incremental
- Notice how 3 of 4 focus on errors, NOT the observed variables!
- These are important for the quality of our model inferences.
:::
### Diagnosing Model Assumptions
#### Linear relationship
##### Good:
```{r}
# label: good-example-linear-relationship
require(tidyverse)
set.seed(2)
linear_data <-
tibble(
x = rnorm(30, mean = 100, sd = 15)
, y = 30 + 10*x + rnorm(30, 0, 30)
)
linear_data %>%
ggplot(
aes(x = x, y = y)
) +
geom_point() +
theme_bw() +
ggtitle('Linearly-related Data')
```
------------------------------------------------------------------------
##### Bad:
```{r}
#| label: bad-example-linear-relationship
set.seed(3)
nonlinear_data <-
tibble(
x = rnorm(100, mean = 0, sd = 3)
, y = 30 + 10*x^2 + rnorm(100, 0, 10)
)
nonlinear_data %>%
ggplot(
aes(x = x, y = y)
) +
geom_point() +
theme_bw() +
ggtitle('Quadratically-related Data')
```
------------------------------------------------------------------------
#### Independence of Errors
##### Good:
```{r}
#| label: good-example-independent-errors
set.seed(4)
independent_errors_data <-
tibble(
x = rnorm(100, mean = 45, sd = 4)
, y = 5 -10*x + rnorm(100, 0, 6)
, prediction = 5 - 10*x
, error = y - prediction
)
independent_errors_data %>%
ggplot(
aes(x = x, y = error)
) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
geom_linerange(aes(ymin = error, ymax = 0)) +
ggtitle("Residuals vs x-values", "With error distance lines") +
theme_bw()
```
------------------------------------------------------------------------
##### Bad:
```{r}
#| label: bad-example-independent-errors
set.seed(5)
dependent_errors_data <-
tibble(
x = rnorm(100, mean = 2, sd = 4)
, y = 5 - 10*x + rnorm(100, x, .5)
, prediction = 5 - 10*x
, error = y - prediction
)
dependent_errors_data %>%
ggplot(
aes(x = x, y = error)
) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
geom_linerange(aes(ymin = error, ymax = 0)) +
ggtitle("Residuals vs x-values", "With error distance lines") +
theme_bw()
```
------------------------------------------------------------------------
#### Normality of Errors
##### Good:
```{r}
#| label: good-example-normal-errors
#| layout-ncol: 2
set.seed(6)
normal_errors_data <-
tibble(
x = rnorm(1000, mean = 450, sd = 4)
, y = 50 + 45*x + rnorm(1000, 0, 6)
, prediction = 50 + 45*x
, error = y - prediction
)
normal_errors_data %>%
ggplot(
aes(x = x, y = error)
) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
geom_linerange(aes(ymin = error, ymax = 0)) +
ggtitle("Residuals vs x-values", "With error distance lines") +
theme_bw()
normal_errors_data %>%
ggplot(
aes(x = error)
) +
geom_histogram(bins = 40, fill = 'blue') +
ggtitle("Distribution of Errors") +
theme_bw()
```
------------------------------------------------------------------------
##### Bad:
```{r}
#| label: bad-example-normal-errors
#| layout-ncol: 2
set.seed(7)
nonnormal_errors_data <-
tibble(
x = rnorm(1000, mean = 450, sd = 4)
, y = 50 + 45*x + runif(1000, min = -2, max = 2)
, prediction = 50 + 45*x
, error = y - prediction
)
nonnormal_errors_data %>%
ggplot(
aes(x = x, y = error)
) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
geom_linerange(aes(ymin = error, ymax = 0)) +
ggtitle("Residuals vs x-values", "With error distance lines") +
theme_bw()
nonnormal_errors_data %>%
ggplot(
aes(x = error)
) +
geom_histogram(bins = 40, fill = 'red') +
ggtitle("Distribution of Errors") +
theme_bw()
```
------------------------------------------------------------------------
#### Equality of Errors
##### Good:
```{r}
#| label: good-example-equal-errors
set.seed(8)
equal_errors_data <-
tibble(
x = rnorm(200, mean = -350, sd = 4)
, y = 50 + 45*x + rnorm(200, 0, 6)
, prediction = 50 + 45*x
, error = y - prediction
)
equal_errors_data <-
equal_errors_data %>%
mutate(
quartile = ntile(x, n = 4)
)
equal_errors_data %>%
ggplot(
aes(x = x, y = error)
) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
geom_linerange(aes(ymin = error, ymax = 0)) +
ggtitle("Residuals vs x-values", "With error distance lines") +
theme_bw()
equal_errors_data %>%
ggplot(
aes(x = quartile, y = error, group = quartile)
) +
geom_boxplot() +
ggtitle("Distribution of Errors", "Homogeneous Errors") +
theme_bw()
```
------------------------------------------------------------------------
##### Bad:
```{r}
#| label: bad-example-equal-errors
set.seed(9)
nonequal_errors_data <-
tibble(
x = rnorm(200, mean = -350, sd = 4)
, y = 50 + 45*x + rnorm(200, (x + 350)^2, 1)
, prediction = 50 + 45*x
, error = y - prediction
)
nonequal_errors_data <-
nonequal_errors_data %>%
mutate(
quartile = ntile(x, n = 4)
)
nonequal_errors_data %>%
ggplot(
aes(x = quartile, y = error, group = quartile)
) +
geom_boxplot() +
ggtitle("Distribution of Errors", "Heterogenous Errors") +
theme_bw()
```
### R Diagnostic Plots
#### Model assumptions not violated
```{r}
#| layout-ncol: 2
#| layout-nrow: 2
#| echo: true
plot(lm_height_weight)
```
------------------------------------------------------------------------
#### Model assumptions violated
```{r}
#| layout-ncol: 2
#| layout-nrow: 2
nonequal_errors_lm <-
lm(y ~ x, data = nonequal_errors_data)
plot(nonequal_errors_lm)
```
### Future Regression Topics
::: incremental
- No-intercept model
- Polynomial regression
- Multiple regression
- Logistic regression
- Analysis of Variance (ANOVA)
- Multivariate regression
:::