-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPPR_sampler.py
209 lines (180 loc) · 8.39 KB
/
PPR_sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import networkx as nx
import pickle as pkl
import time
import copy
import numpy as np
import torch
import os
import logging
import copy
from tqdm import tqdm
from scipy.sparse import csr_matrix, coo_matrix
from collections import defaultdict
def checkPath(path):
if not os.path.exists(path):
os.mkdir(path)
return
class pprSampler():
def __init__(self, n_ent:int, n_rel:int, topk:int, topm:int, homoEdges:list, edge_index:list, data_path:str, split='train', args=None):
'''
args:
topk: number of sampled nodes for one head entity
edge_index: list of triples [(h,r,t)]
data_path: path to save the ppr/subgraphs files
'''
print('==> initializing ppr sampler...')
self.args = args
self.n_ent = n_ent
self.n_samp_ent = args.n_samp_ent
self.n_rel = n_rel
self.topk = topk
self.topm = topm
self.edge_index = edge_index
self.data_folder = data_path
self.homoEdges = homoEdges
self.homoTrainGraph = self.triplesToNxGraph(self.homoEdges)
self.ppr_savePath = os.path.join(self.data_folder, f'ppr_scores/')
checkPath(self.ppr_savePath)
print('==> checking ppr scores for each entity...')
for h in tqdm(range(self.n_ent), ncols=50, leave=False):
ent_ppr_savePath = os.path.join(self.ppr_savePath, f'{int(h)}.pkl')
if os.path.exists(ent_ppr_savePath):
pass
else:
# with default setting to generate ppr scores
h_ppr_scores = self.generatePPRScoresForOneEntity(h)
pkl.dump(h_ppr_scores, open(ent_ppr_savePath, 'wb'))
print('finished.')
# build head to edges with sparse matrix
heads, edges = [h for (h,r,t) in edge_index], list(range(len(edge_index)))
print(len(heads), len(edges), max(heads), self.n_ent)
self.sparseTrainMatrix = csr_matrix((edges, (heads, edges)), shape=(self.n_ent, len(edge_index)))
# change data type
self.edge_index = torch.LongTensor(self.edge_index)
# clean cache
del self.homoEdges
del self.homoTrainGraph
# build sparse tensor self.PPR_W for matrix-computation PPR
'''
tmp_degree, tmp_adj = torch.zeros(self.n_ent, self.n_ent), torch.zeros(self.n_ent, self.n_ent)
tmp_adj[self.edge_index[:,0], self.edge_index[:,2]] = 1
tmp_degree = torch.diag(1 / torch.sum(tmp_adj, dim=1))
self.PPR_W = torch.eye(self.n_ent) + torch.matmul(tmp_degree, tmp_adj)
self.PPR_W = self.PPR_W.cuda()
del tmp_adj; del tmp_degree
'''
print('==> finish sampler initilization.')
def updateEdges(self, edge_index):
# co-operate with shuffle_train
heads, edges = [h for (h,r,t) in edge_index], list(range(len(edge_index)))
self.sparseTrainMatrix = csr_matrix((edges, (heads, edges)), shape=(self.n_ent, len(edge_index)))
self.edge_index = torch.LongTensor(edge_index)
def getPPRscores(self, ent):
ent_ppr_savePath = os.path.join(self.ppr_savePath, f'{int(ent)}.pkl')
scores = pkl.load(open(ent_ppr_savePath, 'rb'))
return scores
def generatePPRScoresForOneEntity(self, h, method='nx'):
if method == 'nx':
'''
nx.pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight='weight', dangling=None)
'''
scores = nx.pagerank(self.homoTrainGraph, personalization={h: 1})
elif method == 'matrix':
alpha, iteration = 0.85, 100
scores = torch.zeros(1, self.n_ent).cuda()
s = torch.zeros(1, self.n_ent).cuda()
s[0, h] = 1
for i in range(iteration):
scores = alpha * s + (1 - alpha) * torch.matmul(scores, self.PPR_W)
scores = scores.cpu().reshape(-1).numpy()
return scores
def triplesToNxGraph(self, edges):
''' edges is the list of [(h,t)] '''
graph = nx.Graph()
nodes = list(range(self.n_ent))
graph.add_nodes_from(nodes)
graph.add_edges_from(edges)
return graph
def sampleSubgraph(self, ent: int, cand=None):
# sample subgraph to get the edges
ppr_scores = np.array(list(self.getPPRscores(ent).values()))
# gurantee the candidates are sampled
if cand != None and self.topk < self.n_ent:
tmp_ppr_scores = copy.deepcopy(ppr_scores)
tmp_ppr_scores[cand] = 1e8
topk_nodes = sorted(list(set([ent] + np.argsort(tmp_ppr_scores)[::-1][:self.topk].tolist())))
else:
# topk sampling
if self.topk < self.n_ent:
topk_nodes = sorted(list(set([ent] + np.argsort(ppr_scores)[::-1][:self.topk].tolist())))
else:
# no sampling
topk_nodes = list(range(self.n_ent))
# get candididate edges
selectd_edges = self.sparseTrainMatrix[topk_nodes, :]
_, tmp_edge_index = selectd_edges.nonzero()
# (h,r,t)
edges = self.edge_index[tmp_edge_index]
topk_nodes = torch.LongTensor(topk_nodes)
# edge sampling
mask = torch.isin(edges[:,2], topk_nodes)
# [n_edges, 3]
sampled_edges = edges[mask, :]
# edge sampling (topm edges for each subgraph)
edge_num = int(sampled_edges.shape[0])
# NOTE: if self.topm== 0, then skip edge sampling
if self.topm > 0 and edge_num > self.topm:
# ppr weight
heads, tails = sampled_edges[:,0], sampled_edges[:,2]
edge_weights = ppr_scores[heads] + ppr_scores[tails]
edge_weights = torch.Tensor(edge_weights)
index = torch.topk(edge_weights, self.topm).indices
sampled_edges = sampled_edges[index]
# get node indexing map
node_index = torch.zeros(self.n_ent).long()
node_index[topk_nodes] = torch.arange(len(topk_nodes))
# connect head to all tails
if self.args.add_manual_edges:
add_edges_head2tails = torch.zeros((len(topk_nodes), 3)).long()
add_edges_head2tails[:, 0] = ent
add_edges_head2tails[:, 1] = 2*self.n_rel + 1
add_edges_head2tails[:, 2] = topk_nodes
add_edges_tails2head = torch.zeros((len(topk_nodes), 3)).long()
add_edges_tails2head[:, 0] = topk_nodes
add_edges_tails2head[:, 1] = 2*self.n_rel + 2
add_edges_tails2head[:, 2] = ent
sampled_edges = torch.cat([sampled_edges, add_edges_head2tails, add_edges_tails2head], dim=0)
return topk_nodes, node_index, sampled_edges
def getOneSubgraph(self, head: int, cand=None):
topk_nodes, node_index, sampled_edges = self.sampleSubgraph(head, cand)
return [head, topk_nodes, node_index, sampled_edges]
def getBatchSubgraph(self, subgraph_list: list):
batchsize = len(subgraph_list)
ent_delta_values = [0]
batch_sampled_edges = []
batch_idxs, abs_idxs = [], []
query_sub_idxs = []
edge_batch_idxs = []
for batch_idx in range(batchsize):
sub, topk_nodes, node_index, sampled_edges = subgraph_list[batch_idx]
num_nodes = len(topk_nodes)
ent_delta = sum(ent_delta_values)
sampled_edges[:,0] = node_index[sampled_edges[:,0]] + ent_delta
sampled_edges[:,2] = node_index[sampled_edges[:,2]] + ent_delta
batch_sampled_edges.append(sampled_edges)
edge_batch_idxs += [batch_idx] * int(sampled_edges.shape[0])
ent_delta_values.append(num_nodes)
batch_idxs += [batch_idx] * num_nodes
abs_idxs += topk_nodes.tolist()
query_sub_idxs.append(int(node_index[sub]) + ent_delta)
# [n_batch_ent]
batch_idxs = torch.LongTensor(batch_idxs)
# [n_batch_ent]
abs_idxs = torch.LongTensor(abs_idxs)
# [n_batch_edges, 3]
batch_sampled_edges = torch.cat(batch_sampled_edges, dim=0)
# [n_batch_edges]
edge_batch_idxs = torch.LongTensor(edge_batch_idxs)
# [n_batch]
query_sub_idxs = torch.LongTensor(query_sub_idxs)
return batch_idxs, abs_idxs, query_sub_idxs, edge_batch_idxs, batch_sampled_edges