-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtuning_analysis.m
803 lines (666 loc) · 31.9 KB
/
tuning_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
clc
clear all
close all
subject_id = 's3';
unit_region = 'S1';
spike_sorting_type = '_unsorted_aligned_thr_-4.5';
flag_4S = true; % true = updated 4S action phase; false = original 2S action phase
flag_shuffled = false; % true = shuffled images task
flag_GB_images = false; % true for task using images of GB's own hands and real objects
flag_5050 = false; % true for 50% Go 50% NoGo trials
flag_combined = true; % true for combinations task
if ~flag_4S
TaskCue = 'GraspObject';
min_timebin_length = 134; % NOT VALID FOR 20230831
elseif ~flag_shuffled
TaskCue = 'GraspObject_4S_Action';
min_timebin_length = 174;
else
TaskCue = 'GraspObject_Shuffled';
min_timebin_length = 174;
end
if flag_GB_images
TaskCue = 'GraspObject_GB_Images';
min_timebin_length = 174;
end
if flag_5050
TaskCue = 'GraspObject_5050';
min_timebin_length = 174;
end
if flag_combined
TaskCue = 'GraspObject_Combined';
min_timebin_length = 174;
end
% Task Variables
% 4S data
Data = load(['C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\' subject_id '\Data\Table_' subject_id '_' TaskCue spike_sorting_type]);
Go_data = Data.Go_data;
if flag_combined
Go_data.TrialType(strcmp(Go_data.TrialType, 'Unknown')) = {'Combined'}; % adds in Combined as Trial type
% add in column with Object Type for Combined trials and original trial types (H, HO, O with Associated)
% Loop through each label and extract the object information
for i = 1:height(Go_data)
% Use regular expression to find the size keyword after the last underscore
tokens = regexp(Go_data.LabelNames{i}, '_(deck|block|rod|ball)$', 'tokens');
if ~isempty(tokens)
% tokens is a cell array; extract the size keyword from it
Go_data.ObjectType{i} = tokens{1}{1};
else
Go_data.ObjectType{i} = 'Associated';
end
end
end
% remove faulty sessions, if any
error_session = {};
if strcmp(subject_id, 's2')
error_session = {'20231016'};
elseif strcmp(subject_id, 's3')
error_session = {};
elseif strcmp(subject_id, 's4')
error_session = {};
end
if ~isempty(error_session)
condition = cellfun(@(x) strcmp(x, error_session), Go_data.session_date);
Go_data = Go_data(~condition,:);
end
flagGoTrials = true; % false = No-Go
flagRegressionTuning = true;
if flagRegressionTuning
analysis_type = 'LinearRegression';
else
analysis_type = 'KruskalWallis';
end
flagBinPerBin = true;
multipleComparePhase = true;
flagTunedChannels = true;
flagSaveData = true;
%chose cue type:
taskCuesAll = {'Hand', 'Hand-Object', 'Object'};
if flag_combined
taskCuesAll = {'Combined','Hand', 'Hand-Object', 'Object'};
end
sessions_all = unique(Go_data.session_date);
numSessions = numel(sessions_all);
phase_time_idx = Go_data.time_phase_labels{1,1};
numPhases = numel(unique(phase_time_idx));
phase_changes_idx = diff(phase_time_idx);
phase_changes(1) = 1;
phase_changes(2:numPhases) = find(phase_changes_idx) + 1;
phaseNames = {'ITI', 'Cue', 'Delay', 'Action'};
color_info = {[.1176 .5333 .8980],[.8471 .1059 .3765],[1 .7569 .0275]};
if flag_combined
color_info = {[.3632 .2266 .6055],[.1176 .5333 .8980],[.8471 .1059 .3765],[1 .7569 .0275]};
end
numUnitsPerSession = zeros(numSessions,1);
% Initialize cell arrays to store results
hand_ho_overlap_units_all = cell(numSessions,1);
% hand_only_units_all = cell(numSessions,1);
% ho_only_units_h_all = cell(numSessions,1);
object_ho_overlap_units_all = cell(numSessions,1);
% object_only_units_all = cell(numSessions,1);
% ho_only_units_o_all = cell(numSessions,1);
object_hand_overlap_units_all = cell(numSessions,1);
% object_only_units_h_all = cell(numSessions,1);
% hand_only_units_o_all = cell(numSessions,1);
object_hand_ho_overlap_units_all = cell(numSessions,1);
%% Analysis
for n_session = 1:numSessions
disp(['Classification session ' sessions_all{n_session} ]);
%find idx of current session day
idxThisSession = ismember(Go_data.session_date, sessions_all(n_session));
%extract data from selected brain area
if strcmp('SMG', unit_region)
SessionData = Go_data.SMG_Go(idxThisSession,:);
elseif strcmp('PMV', unit_region)
SessionData = Go_data.PMV_Go(idxThisSession,:);
elseif strcmp('S1', unit_region)
SessionData = Go_data.S1X_Go(idxThisSession,:);
elseif strcmp('M1', unit_region)
SessionData = Go_data.M1_Go(idxThisSession,:);
elseif strcmp('AIP', unit_region)
SessionData = Go_data.AIP_Go(idxThisSession,:);
elseif strcmp('dlPFC', unit_region)
SessionData = Go_data.dlPFC_Go(idxThisSession,:);
else
error([unit_region ' does not exist '])
end
% skip session days that are empty - relevant for S1 session 20230810
if isempty(SessionData{1})
continue
end
%labels
sessionLabels = Go_data.GoLabels(idxThisSession,:);
%trialType
trialTypeSession = Go_data.TrialType(idxThisSession,:);
%get idx for Go or NoGo trials
GoNoGoidx = logical(cell2mat(Go_data.TrialCue(idxThisSession,:)));
timePhaseLabels = Go_data.time_phase_labels(idxThisSession);
if flagGoTrials
SessionData = SessionData(GoNoGoidx);
sessionLabels = sessionLabels(GoNoGoidx);
timePhaseLabels = timePhaseLabels(GoNoGoidx);
trialTypeSession = trialTypeSession(GoNoGoidx);
else
SessionData = SessionData(~GoNoGoidx);
sessionLabels = sessionLabels(~GoNoGoidx);
timePhaseLabels = timePhaseLabels(~GoNoGoidx);
trialTypeSession = trialTypeSession(~GoNoGoidx);
end
%seperate data according to cue modality
unTrialType = unique(Go_data.TrialType);
numUnitsPerSession(n_session) = size(SessionData{1},2);
% loop through cue modalities
for n_type = 1:numel(unTrialType)
% find idx of trial type
trialTypeIdx = ismember(trialTypeSession, unTrialType(n_type));
if flagTunedChannels
%Compute index of units that are tuned
if flagRegressionTuning
[tunedCombinedChannels, tunedChannelsPhase, tunedChannelsBin, sumPhase, sumBin,numTunedChannelsPerCategory,~,~,p_per_phase] ...
= classification.getRegressionTunedChannels_paper(SessionData(trialTypeIdx),sessionLabels(trialTypeIdx), ...
timePhaseLabels(trialTypeIdx), 'multcompare', multipleComparePhase, 'BinperBinTuning', flagBinPerBin);
condToTest = arrayfun(@(x) preproc.image2class_simple(x), unique(sessionLabels), 'UniformOutput', false);
if nnz(sumBin) ~= 0
figure();
plot(sumBin);
end
tuned_channels_per_graps{n_type,n_session} = numTunedChannelsPerCategory;
else
tuned_channels_per_graps{n_type,n_session} = [];
[tunedCombinedChannels, tunedChannelsPhase, tunedChannelsBin, sumPhase, sumBin]= classification.getTunedChannels(SessionData(trialTypeIdx),sessionLabels(trialTypeIdx), ...
timePhaseLabels(trialTypeIdx), 'multcompare', multipleComparePhase,'removeITItuning', 'false', 'BinperBinTuning', flagBinPerBin);
sumBin = sumBin';
end
if nnz(sumBin) > 0
sum_bin_all{n_type, n_session } = sumBin;
else
sum_bin_all{n_type, n_session } = [];
end
tuned_channels_per_phase{n_type,n_session} = sumPhase;
tuned_channels_per_phase_vector{n_type,n_session} = tunedChannelsPhase;
end
end
% calculating tuning overlap
% H-HO overlap
hand_ho_overlap_vector = (tuned_channels_per_phase_vector{1,n_session} == 1) & (tuned_channels_per_phase_vector{2,n_session} == 1); % this tells me the overlap between hand and hand-object units
hand_ho_overlap_units = sum(hand_ho_overlap_vector, 1);
hand_ho_overlap_units_all{n_session} = hand_ho_overlap_units;
% hand_only_units = tuned_channels_per_phase{1,n_session} - hand_ho_overlap_units;
% ho_only_units_h = tuned_channels_per_phase{2,n_session} - hand_ho_overlap_units;
% hand_only_units_all{n_session} = hand_only_units;
% ho_only_units_h_all{n_session} = ho_only_units_h;
% O-HO overlap
object_ho_overlap_vector = (tuned_channels_per_phase_vector{3,n_session} == 1) & (tuned_channels_per_phase_vector{2,n_session} == 1); % this tells me the overlap between object and hand-object units
object_ho_overlap_units = sum(object_ho_overlap_vector, 1);
object_ho_overlap_units_all{n_session} = object_ho_overlap_units;
% object_only_units = tuned_channels_per_phase{3,n_session} - object_ho_overlap_units;
% ho_only_units_o = tuned_channels_per_phase{2,n_session} - object_ho_overlap_units;
% object_only_units_all{n_session} = object_only_units;
% ho_only_units_o_all{n_session} = ho_only_units_o;
% O-H overlap
object_hand_overlap_vector = (tuned_channels_per_phase_vector{3,n_session} == 1) & (tuned_channels_per_phase_vector{1,n_session} == 1); % this tells me the overlap between object and hand units
object_hand_overlap_units = sum(object_hand_overlap_vector, 1);
object_hand_overlap_units_all{n_session} = object_hand_overlap_units;
% object_only_units_h = tuned_channels_per_phase{3,n_session} - object_hand_overlap_units;
% hand_only_units_o = tuned_channels_per_phase{1,n_session} - object_hand_overlap_units;
% object_only_units_h_all{n_session} = object_only_units_h;
% hand_only_units_o_all{n_session} = hand_only_units_o;
% all 3 modalities overlap
object_hand_ho_overlap_vector = (tuned_channels_per_phase_vector{3,n_session} == 1) & (tuned_channels_per_phase_vector{1,n_session} == 1) & (tuned_channels_per_phase_vector{2,n_session} == 1); % this tells me the overlap between object, HO, and hand units
object_hand_ho_overlap_units = sum(object_hand_ho_overlap_vector, 1);
object_hand_ho_overlap_units_all{n_session} = object_hand_ho_overlap_units;
end
hand_ho_overlap_units_all_sessions = sum(cell2mat(hand_ho_overlap_units_all));
% hand_only_units_all = cell2mat(hand_only_units_all');
% ho_only_units_h_all = cell2mat(ho_only_units_h_all');
object_ho_overlap_units_all_sessions = sum(cell2mat(object_ho_overlap_units_all));
% object_only_units_all = cell2mat(object_only_units_all');
% ho_only_units_o_all = cell2mat(ho_only_units_o_all');
object_hand_overlap_units_all_sessions = sum(cell2mat(object_hand_overlap_units_all));
% object_only_units_h_all = cell2mat(object_only_units_h_all');
% hand_only_units_o_all = cell2mat(hand_only_units_o_all');
object_hand_ho_overlap_units_all_sessions = sum(cell2mat(object_hand_ho_overlap_units_all));
hand_total_units = sum(cell2mat(tuned_channels_per_phase(1,:)'));
ho_total_units = sum(cell2mat(tuned_channels_per_phase(2,:)'));
object_total_units = sum(cell2mat(tuned_channels_per_phase(3,:)'));
%% saving variables
goLabel = ["NoGo", "Go"];
goLabel = goLabel(flagGoTrials + 1);
% Create the filename using the brain region and analysis type
%filename = ['tuned_channels_' unit_region '_' TaskCue '_' analysis_type '_' goLabel '.mat']; % goLabel determines Go, NoGo label
filename = "tuned_channels_" + TaskCue + '_' + unit_region + "_" + analysis_type + "_" + goLabel + ".mat";
directory = ['C:\Users\macthurston\Documents\GitHub\project_grasp_object_interaction\analyzedData\' subject_id];
full_path = fullfile(directory, filename);
% Save the relevant variables with the dynamic filename
save(full_path, 'sum_bin_all', 'tuned_channels_per_phase', 'tuned_channels_per_phase_vector','numUnitsPerSession',...
'hand_ho_overlap_units_all','object_ho_overlap_units_all','object_hand_overlap_units_all','object_hand_ho_overlap_units_all',...
'hand_ho_overlap_units_all_sessions','object_ho_overlap_units_all_sessions','object_hand_overlap_units_all_sessions','object_hand_ho_overlap_units_all_sessions',...
'hand_total_units','ho_total_units','object_total_units');
%% across sessions tuned units overlapping
% tuned_channels_per_phase_vector; % 3 (modality) x 5 (sessions)
% % I can compare within sessions how much overlap there is and then average
% % the sessions together to get average overlap
%
% % H-HO overlap
% hand_ho_overlap_vector = (tuned_channels_per_phase_vector{1,1} == 1) & (tuned_channels_per_phase_vector{2,1} == 1); % this tells me the overlap between hand and hand-object units
% % I can sum and then substract from the total to get the venn diagram
% hand_ho_overlap_units = sum(hand_ho_overlap_vector, 1);
%
% tuned_channels_per_phase; % total units for each modality
% hand_only_units = tuned_channels_per_phase{1,1} - hand_ho_overlap_units;
% ho_only_units_h = tuned_channels_per_phase{2,1} - hand_ho_overlap_units;
%
% % next find average by iterating through each session and then finding the
% % mean
%
% % O-HO overlap
% object_ho_overlap_vector = (tuned_channels_per_phase_vector{3,1} == 1) & (tuned_channels_per_phase_vector{2,1} == 1); % this tells me the overlap between object and hand-object units
% % I can sum and then substract from the total to get the venn diagram
% object_ho_overlap_units = sum(object_ho_overlap_vector, 1);
%
% tuned_channels_per_phase; % total units for each modality
% object_only_units = tuned_channels_per_phase{3,1} - object_ho_overlap_units;
% ho_only_units_o = tuned_channels_per_phase{2,1} - object_ho_overlap_units;
%
% % next find average by iterating through each session and then finding the
% % mean
%
% % O-H overlap
% object_hand_overlap_vector = (tuned_channels_per_phase_vector{3,1} == 1) & (tuned_channels_per_phase_vector{1,1} == 1); % this tells me the overlap between object and hand units
% % I can sum and then substract from the total to get the venn diagram
% object_hand_overlap_units = sum(object_hand_overlap_vector, 1);
%
% tuned_channels_per_phase; % total units for each modality
% object_only_units_h = tuned_channels_per_phase{3,1} - object_hand_overlap_units;
% hand_only_units_o = tuned_channels_per_phase{1,1} - object_hand_overlap_units;
%
% % next find average by iterating through each session and then finding the
% % mean
%
% % all 3 modalities overlap
% object_hand_ho_overlap_vector = (tuned_channels_per_phase_vector{3,1} == 1) & (tuned_channels_per_phase_vector{1,1} == 1) & (tuned_channels_per_phase_vector{2,1} == 1); % this tells me the overlap between object and hand units
% % I can sum and then substract from the total to get the venn diagram
% object_hand_ho_overlap_units = sum(object_hand_ho_overlap_vector, 1);
%
% tuned_channels_per_phase; % total units for each modality
% object_only_units_h = tuned_channels_per_phase{3,1} - object_hand_overlap_units;
% hand_only_units_o = tuned_channels_per_phase{1,1} - object_hand_overlap_units;
%% example (requires Statistics and Machine Learning Toolbox) => unsure if
% % can handle 3 inputs
% % Sample data (replace with your own data)
% set1 = randi([0, 1], 1, 100); % Binary data for set 1
% set2 = randi([0, 1], 1, 100); % Binary data for set 2
%
% % Create a logical array for the Venn diagram
% venn_data = [sum(set1 & ~set2), sum(~set1 & set2), sum(set1 & set2)];
%
% % Create a Venn diagram using vennplot
% figure;
% vennplot(venn_data, 'FaceColor', {'r', 'g', 'b'}, 'FaceAlpha', 0.5);
%
% % Add labels
% vennlabel({'Set 1', 'Set 2'});
%
% % Add a title
% title('Venn Diagram');
%
% % Adjust the display
% axis equal;
%% load Data
goLabel = ["NoGo", "Go"];
goLabel = goLabel(flagGoTrials + 1);
directory = ['C:\Users\macthurston\Documents\GitHub\project_grasp_object_interaction\analyzedData\' subject_id];
analysis_type = 'LinearRegression'; % 'LinearRegression' or 'KW'
filename = "tuned_channels_" + TaskCue + '_' + unit_region + "_" + analysis_type + "_" + goLabel + ".mat";
full_path = fullfile(directory, filename);
load(full_path);
%% Overlap values
% Cue
all_overlap_cue = object_hand_ho_overlap_units_all_sessions(2);
h_o_overlap_cue = object_hand_overlap_units_all_sessions(2) - all_overlap_cue;
h_ho_overlap_cue = hand_ho_overlap_units_all_sessions(2) - all_overlap_cue;
h_only_units_cue = hand_total_units(2) - (all_overlap_cue + h_o_overlap_cue + h_ho_overlap_cue);
o_ho_overlap_cue = object_ho_overlap_units_all_sessions(2) - all_overlap_cue;
o_only_units_cue = object_total_units(2) - (all_overlap_cue + h_o_overlap_cue + o_ho_overlap_cue);
ho_only_units_cue = ho_total_units(2) - (all_overlap_cue + h_ho_overlap_cue + o_ho_overlap_cue);
cue_total_units = all_overlap_cue + h_only_units_cue + o_only_units_cue + ho_only_units_cue + h_ho_overlap_cue + h_o_overlap_cue + o_ho_overlap_cue;
% Action
all_overlap_action = object_hand_ho_overlap_units_all_sessions(4);
h_o_overlap_action = object_hand_overlap_units_all_sessions(4) - all_overlap_action;
h_ho_overlap_action = hand_ho_overlap_units_all_sessions(4) - all_overlap_action;
h_only_units_action = hand_total_units(4) - (all_overlap_action + h_o_overlap_action + h_ho_overlap_action);
o_ho_overlap_action = object_ho_overlap_units_all_sessions(4) - all_overlap_action;
o_only_units_action = object_total_units(4) - (all_overlap_action + h_o_overlap_action + o_ho_overlap_action);
ho_only_units_action = ho_total_units(4) - (all_overlap_action + h_ho_overlap_action + o_ho_overlap_action);
action_total_units = all_overlap_action + h_only_units_action + o_only_units_action + ho_only_units_action + h_ho_overlap_action + h_o_overlap_action + o_ho_overlap_action;
% Percentages
% Cue
all_overlap_cue_perc = (all_overlap_cue/cue_total_units)*100;
h_o_overlap_cue_perc = (h_o_overlap_cue/cue_total_units)*100;
h_ho_overlap_cue_perc = (h_ho_overlap_cue/cue_total_units)*100;
h_only_units_cue_perc = (h_only_units_cue/cue_total_units)*100;
o_ho_overlap_cue_perc = (o_ho_overlap_cue/cue_total_units)*100;
o_only_units_cue_perc = (o_only_units_cue/cue_total_units)*100;
ho_only_units_cue_perc = (ho_only_units_cue/cue_total_units)*100;
% Action
all_overlap_action_perc = (all_overlap_action/action_total_units)*100;
h_o_overlap_action_perc = (h_o_overlap_action/action_total_units)*100;
h_ho_overlap_action_perc = (h_ho_overlap_action/action_total_units)*100;
h_only_units_action_perc = (h_only_units_action/action_total_units)*100;
o_ho_overlap_action_perc = (o_ho_overlap_action/action_total_units)*100;
o_only_units_action_perc = (o_only_units_action/action_total_units)*100;
ho_only_units_action_perc = (ho_only_units_action/action_total_units)*100;
%% creating bar plots of overlap
% look at all conditions
conditionLabels = categorical({'H','H&HO','HO','H&HO&O','HO&O','O','O&H'});
conditionLabels = reordercats(conditionLabels,{'H','H&HO','HO','H&HO&O','HO&O','O','O&H'});
cueOverlap = [h_only_units_cue_perc h_ho_overlap_cue_perc ho_only_units_cue_perc all_overlap_cue_perc o_ho_overlap_cue_perc o_only_units_cue_perc h_o_overlap_cue_perc]; % Cue
actionOverlap = [h_only_units_action_perc h_ho_overlap_action_perc ho_only_units_action_perc all_overlap_action_perc o_ho_overlap_action_perc o_only_units_action_perc h_o_overlap_action_perc]; % Action
% Create the first bar chart
b1 = bar(conditionLabels, cueOverlap, 'FaceColor', 'b', 'FaceAlpha', 0.5); % Blue bars with transparency
hold on;
% Create the second bar chart
b2 = bar(conditionLabels, actionOverlap, 'FaceColor', 'r', 'FaceAlpha', 0.5); % Red bars with transparency
% Add labels and legend
xlabel('Condition');
ylabel('% of Tuned Units');
legend({'Cue', 'Action'});
title(['Overlapping Units Throughout Trial - ' unit_region]);
hold off;
%%
% look at overlap of all 3 conditions with SDs
% okay so hand_total_units gives the total number of tuned units during the
% H blocks across all sessions, same for the others (can also look at
% tuned_units_per_phase if needed). we also have the values of tuned units
% for the overlap of all 3 for each individual session stored in
% object_hand_ho_overlap_all. I want to look at the percentage of tuned
% units contained in the all overlapping condition, so I think I need to add the
% tuned units that were present in each condition and use that as the
% denomiator
allOverlap = cell2mat(object_hand_ho_overlap_units_all);
percentageOverlap = cell(numSessions,1);
for n_session = 1:numSessions
overlap_cue = allOverlap(n_session,2);
overlap_action = allOverlap(n_session,4);
tmpData = cell2mat(tuned_channels_per_phase(:,n_session));
total_units_cue = sum(tmpData(:,2));
total_units_action = sum(tmpData(:,4));
percentageOverlap{n_session} = [(overlap_cue/total_units_cue)*100 (overlap_action/total_units_action)*100];
end
% now find mean and SD
%% bar plot of tuned units w/ 95% CIs (work on getting them all on same plot)
%save('C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\Workspaces\LinearRegression\s2\s2_GraspObject_2S_unsorted_aligned_thr_-4.5_SMG_Example.mat','sum_bin_all')
%ExampleSMG = load('C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\Workspaces\LinearRegression\s2\s2_GraspObject_2S_unsorted_aligned_thr_-4.5_SMG_Example.mat');
% upload linear regression analysis
%load('C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\Workspaces\LinearRegression\s2\s2_GraspObject_2S_unsorted_aligned_thr_-4.5_PMV.mat');
% phase_yCI95 = [];
% phase_tuned_mean = [];
phase_tuned_mean_all = zeros(numel(taskCuesAll), numPhases); % Mean percentages
phase_yCI95_all = zeros(numel(taskCuesAll), numPhases); % 95% CI
percentage_tuned_all = cell(numel(taskCuesAll), 1);
%sessionToInclude = setdiff(1:numSessions,1);
% code for empty/missing session data
rowsToKeep = numUnitsPerSession ~= 0;
numUnitsPerSession = numUnitsPerSession(rowsToKeep);
sessionToInclude = 1:numel(numUnitsPerSession);
colsToKeep = true(1,numSessions);
for n_session = 1:numSessions
if all(cellfun('isempty',tuned_channels_per_phase(:,n_session)))
colsToKeep(n_session) = false;
end
end
tuned_channels_per_phase = tuned_channels_per_phase(:,colsToKeep);
figure('units','normalized','outerposition',[0 0 .38 0.38]);
for n_type = 1:numel(taskCuesAll)
dataTmp = cell2mat(tuned_channels_per_phase(n_type,sessionToInclude)')*100;
percentage_tuned = dataTmp./numUnitsPerSession(sessionToInclude);
percentage_tuned_all{n_type} = percentage_tuned;
yCI95tmp = utile.calculate_CI(percentage_tuned); % Calculate 95% Probability Intervals Of t-Distribution using SEM
phase_yCI95_all(n_type,:) = yCI95tmp(2,:);
phase_tuned_mean_all(n_type,:) = mean(percentage_tuned,1);
% figure()
subplot(1,numel(taskCuesAll),n_type)
hold on
bar(phase_tuned_mean_all(n_type,:),'FaceColor',color_info{n_type});
hold on
errorbar(phase_tuned_mean_all(n_type,:),phase_yCI95_all(n_type,:),'Color','k');
title(taskCuesAll(n_type));
xticks(1:numel(phaseNames));
xticklabels(phaseNames);
xtickangle(45);
ylabel('% of Total Units');
ylim([0 70]);
sgtitle(['Tuned Units in ' unit_region])
set(gca, 'FontSize', 12);
end
%% ANOVA for percentage tuned
% formatting the data
numModalities = numel(taskCuesAll);
% Initialize the 3D array
percentage_tuned_3D = zeros(numSessions, numPhases, numModalities);
% Loop through each modality and fill the 3D array
for n_modality = 1:numModalities
% Extract the data from the cell
current_data = percentage_tuned_all{n_modality};
% Check the size of current_data
[numSessionsCheck, numPhasesCheck] = size(current_data);
% Ensure the size matches the expected dimensions
if numSessionsCheck ~= numSessions || numPhasesCheck ~= numPhases
error('The dimensions of the data in cell %d do not match expected dimensions.', n_modality);
end
% Fill the 3D array
percentage_tuned_3D(:, :, n_modality) = current_data;
end
[numSessions, numPhases, numModalities] = size(percentage_tuned_3D);
% Loop through each phase
for n_phase = 1:numPhases
% Extract data for the current phase
phaseData = squeeze(percentage_tuned_3D(:, n_phase, :)); % Shape: [numSessions, numModalities]
% Reshape data for ANOVA
data = [];
modality = [];
% Loop through each modality
for n_modality = 1:numModalities
% Append the classification percentage
data = [data; phaseData(:, n_modality)];
% Append modality identifier
modality = [modality; repmat(n_modality, numSessions, 1)];
end
% Convert modality to categorical for ANOVA
modality = categorical(modality);
% Create a table with the reshaped data
dataTable = table(data, modality);
% Perform ANOVA for the current phase
[p, tbl, stats] = anova1(dataTable.data, dataTable.modality, 'off');
% Display ANOVA results
disp(['Phase ' num2str(n_phase) ':']);
disp(['p-value = ' num2str(p)]);
% Perform post-hoc tests if ANOVA is significant
if p < 0.05
[c, m, h, gnames] = multcompare(stats, 'CType', 'tukey-kramer');
disp('Post-hoc test results:');
disp(c);
end
end
%% bar plot w/o CIs
for n_type = 1:numel(unTrialType)
if numSessions ~= 1
tunedUnitsPerType(n_type,:) = sum(cell2mat(tuned_channels_per_phase(n_type,:)'));
else
tunedUnitsPerType(n_type,:) = cell2mat(tuned_channels_per_phase(n_type,:)');
end
end
figure('units','normalized','outerposition',[0 0 0.2 0.35]);
b = bar((tunedUnitsPerType'./sum(numUnitsPerSession))*100);
%bar((((tunedUnitsPerType')*8)./sum(numUnitsPerSession))*100);
%bar(tunedUnitsPerType');
hold on;
for k = 1:numel(b)
b(k).FaceColor = color_info{k}; % Assign colors from cell array
end
title(['Tuned Units in ' unit_region]);
xticks(1:numel(phaseNames));
xticklabels(phaseNames);
ylabel('% of Total Units');
%ylabel('# of Tuned Units');
ylim([0 70]);
yticks([0 35 70]);
%ylim([0 50]);
legend(taskCuesAll, 'Location', 'Best', 'Interpreter', 'none','FontSize',12);
set(gca, 'FontSize', 12);
hold off
% % for F30
% phaseNames = {'Action'};
% taskCuesAll = {'G', 'G+O'};
% %tuned_channels_per_phase = [23 36; 38 47]; % pulling out cue and action of H & H+O, specific session for proposal
% tuned_channels_per_phase = [50; 56]; % pulling out action of H & H+O, specific session for proposal
% %tuned_channels_per_phase = [20 39; 30 46]; % SMG - pulling out cue and
% %action of H & H+O, specific session for proposal, OVERLAPPING UNITS found
% %in hand_ho_overlap_units for each phase
% %tuned_channels_per_phase = [5 24; 16 26]; % AIP - cue and action for H & HO
% %tuned_channels_per_phase = [34 50; 38 56]; % M1 - cue and action for H & HO
%
% tunedUnitsPerType = tuned_channels_per_phase;
% figure('Position',[500 500 200 300]);
% h = bar((tunedUnitsPerType'./sum(numUnitsPerSession))*100, 'FaceColor','flat');
% h.CData(1,:) = [0.1176, 0.5333, 0.8980];
% h.CData(2,:) = [0.8471, 0.1059, 0.3765];
% %bar((((tunedUnitsPerType')*8)./sum(numUnitsPerSession))*100);
% %bar(tunedUnitsPerType');
% hold on;
% %title([unit_region ' - ' phaseNames]);
% xticks(1:numel(taskCuesAll));
% xticklabels(taskCuesAll);
% xlim([0.5, 2.5]);
% %ylabel('% of Total Units');
% %ylabel('# of Tuned Units');
% ylim([0 100]);
% yticks([0 50 100]);
% %ylim([0 50]);
% %legend(taskCuesAll, 'Location', 'Best', 'Interpreter', 'none','FontSize',12);
% set(gca, 'FontSize', 12);
% hold off
%% line plot w/o CIs
for n_type = 1:numel(unTrialType)
tunedUnitsPerTypeBin(n_type,:) = sum(cell2mat(sum_bin_all(n_type,:)),2);
end
figure('units','normalized','outerposition',[0 0 0.3 0.45]);
lp = plot((tunedUnitsPerTypeBin'./sum(numUnitsPerSession))*100,'LineWidth',2);
%plot((((tunedUnitsPerTypeBin')*8)./sum(numUnitsPerSession))*100,'LineWidth',2);
%plot(tunedUnitsPerTypeBin','LineWidth',2);
hold on
for n_phase = 1:numPhases
xline(phase_changes(n_phase), 'k--', phaseNames{n_phase}, 'LineWidth', 1.5,'FontSize',12);
end
for k = 1:numel(lp)
lp(k).Color = color_info{k}; % Assign colors manually
end
title(['Tuned Units Throughout Trial in ' unit_region]) % ' - ' sessions_all{n_session}]);
xlabel('Time Bins (50 ms)');
xlim([0 (min_timebin_length + 5)])
%xticks([0 50 100 150]);
ylabel('% of Total Units');
%ylabel('# of Tuned Units');
ylim([0 70]);
%yticks([0 20 40 60]);
%ylim([0 50]);
legend(taskCuesAll, 'Location', 'Best','FontSize',12);
set(gca, 'FontSize', 12);
hold off
%% for line plot w/ 95% CI
% Initialize variables
percentage_tuned_per_bin_all = cell(numel(taskCuesAll), 1);
per_bin_yCI95 = zeros(numel(taskCuesAll),min_timebin_length);
per_bin_tuned_mean = zeros(numel(taskCuesAll),min_timebin_length);
%sessionToInclude = setdiff(1:numSessions,1);
%code for empty/missing session data
rowsToKeep = numUnitsPerSession ~= 0;
numUnitsPerSession = numUnitsPerSession(rowsToKeep);
sessionToInclude = 1:numel(numUnitsPerSession);
colsToKeep = true(1,numSessions);
for n_session = 1:numSessions
if all(cellfun('isempty',sum_bin_all(:,n_session)))
colsToKeep(n_session) = false;
end
end
sum_bin_all = sum_bin_all(:,colsToKeep);
figure('units','normalized','outerposition',[0 0 0.5 0.4]);
err_bar = {};
for n_type = 1:numel(taskCuesAll)
dataTmp = cell2mat(sum_bin_all(n_type,sessionToInclude))*100;
percentage_tuned_per_bin = dataTmp./(numUnitsPerSession(sessionToInclude)');
percentage_tuned_per_bin_all{n_type} = percentage_tuned_per_bin;
yCI95tmp = utile.calculate_CI(percentage_tuned_per_bin');
per_bin_yCI95(n_type,:) = yCI95tmp(2,:);
per_bin_tuned_mean(n_type,:) = mean(percentage_tuned_per_bin,2);
hold on
err_bar{n_type} = plot(1:length(dataTmp),per_bin_tuned_mean(n_type,:),'Color', color_info{n_type},'LineWidth',2);
ER = utile.shadedErrorBar(1:length(dataTmp),per_bin_tuned_mean(n_type,:),per_bin_yCI95(n_type,:));
ER.mainLine.Color = color_info{n_type};
ER.patch.FaceColor = color_info{n_type};
ER.edge(1).LineStyle = 'none'; %color_info{n_type};
ER.edge(2).LineStyle = 'none'; %color_info{n_type};
end
for n_phase = 1:numPhases
xline(phase_changes(n_phase), 'k--', 'LineWidth', 1.5,'FontSize',12); %phaseNames{n_phase}
end
title(['Tuned Units Throughout Trial in ' unit_region]);
xlabel('Time Bins (50 ms)');
xlim([0 (min_timebin_length + 5)]); %([30 134]); %shortened %(min_timebin_length + 5)]) % 5 chosen as a buffer
xticks(phase_changes);
xticklabels(phaseNames);
xtickangle(45);
ylabel('% of Total Units');
ylim([0 70]);
yticks([0 35 70]);
legend([err_bar{:}], taskCuesAll,'Location', 'Best','Interpreter', 'none','FontSize',12);
set(gca, 'FontSize', 12);
%% ANOVA for percentage tuned across first half of Cue
% I need to take the average percent of units across that 1st
% second for each session and then use those averages to run ANOVA and
% determine if there are any differences => Cue timebins = 42-82 (can find
% with var phase_changes)
% formatting the data
numModalities = numel(taskCuesAll);
numTimebins = min_timebin_length;
% Define the timebins of interest (1st half of Cue)
timebins_of_interest = 42:61;
num_timebins_of_interest = length(timebins_of_interest);
% Initialize storage for averaged data
halfCue_ave_percentage_tuned = zeros(numSessions, numModalities);
% Loop through each modality
for n_modality = 1:numModalities
% Extract the data from the cell
current_data = percentage_tuned_per_bin_all{n_modality}';
% Average across the timebins of interest for each session
halfCue_ave_percentage_tuned(:, n_modality) = mean(current_data(:, timebins_of_interest), 2);
end
% Reshape data for ANOVA
data = [];
modality = [];
% Loop through each modality
for n_modality = 1:numModalities
% Append the averaged percentage of tuned units
data = [data; halfCue_ave_percentage_tuned(:, n_modality)];
% Append modality identifier
modality = [modality; repmat(n_modality, numSessions, 1)];
end
% Convert modality to categorical for ANOVA
modality = categorical(modality);
% Create a table with the reshaped data
dataTable = table(data, modality);
% Perform ANOVA
[p, tbl, stats] = anova1(dataTable.data, dataTable.modality, 'off');
% Display ANOVA results
disp('ANOVA Results:');
disp(['p-value = ' num2str(p)]);
% Perform post-hoc tests if ANOVA is significant
if p < 0.05
[c, m, h, gnames] = multcompare(stats, 'CType', 'tukey-kramer');
disp('Post-hoc test results:');
disp(c);
end
%%
% blub = percentage_tuned.*numUnitsPerSession';
% blub2= mean(blub');
% figure(); plot(zscore(blub2)); hold on; plot(zscore(per_bin_tuned_mean(n_type,:)))