-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing_steps.m
492 lines (379 loc) · 20.9 KB
/
preprocessing_steps.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
% Cleaned up preprocessing file for Speech paper. For S2 and S3
clc
clear all
close all
subject_id = 's2'; %FG
%subject_id = 's3'; %AN
%subject_id = 's4'; %GB
% session details
subject = hst.Subject(subject_id);
flag_dPCA = false;
flag_4S = true; % updated Action to 4S, should ALWAYS be true
% task variations - only 1 should be true
flag_shuffled = false; % true for shuffled images task
flag_varied_size = true; % true for varied object/aperature size
flag_GB_images = false; % true for task using images of GB's own hands and real objects
flag_5050 = false; % true for 50/50 Go/NoGo task
flag_combined = false; % true for combinations task
if strcmp(subject_id, 's2')
%session_dates = {'20230831','20230907'};
session_dates = {'20250305'};
elseif strcmp(subject_id, 's3')
session_dates = {'20250211','20250212'};
elseif strcmp(subject_id, 's4')
session_dates = {'20240822'};
else
error('unknown subject')
end
save_data = true;
flagRemoveTrials = true;
spike_sorting_type = 'unsorted_aligned_thr_-4.5';
%spike_sorting_type = 'unsorted_aligned_noratefilt_4.5';
%spike_sorting_type = 'unsorted_aligned_noratefilt';
%spike_sorting_type = 'sorting'; % I did not rethreshold the session before spike sorting... idk if that will work?
if ~flag_4S
TaskCue = 'GraspObject';
min_timebin_length = 134; % NOT VALID FOR 20230831
elseif ~flag_shuffled
TaskCue = 'GraspObject_4S_Action';
min_timebin_length = 174;
else
TaskCue = 'GraspObject_Shuffled';
min_timebin_length = 174;
end
% OR
if flag_varied_size
TaskCue = 'GraspObject_Varied_Size';
min_timebin_length = 174;
end
if flag_GB_images
TaskCue = 'GraspObject_GB_Images';
min_timebin_length = 174;
end
if flag_5050
TaskCue = 'GraspObject_5050';
min_timebin_length = 174;
end
if flag_combined
TaskCue = 'GraspObject_Combined';
min_timebin_length = 174;
end
save_data_pathway = ['C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\' subject_id '\Data\IndividualFiles\' TaskCue '\' spike_sorting_type];
%create the folder if it does not exist in the path yet
if ~exist(save_data_pathway)
mkdir(save_data_pathway)
end
flagRemoveErrorTrials = true; %remove trials were errors occured
session_date_idx = 1:length(session_dates);
classification_result = [];
classification_result_com = [];
last_session_date = 0;
for n_session = session_date_idx
disp('-----------------------------------------------------------')
disp(['Session Day : ' session_dates{n_session}])
disp(['Spike sorting type : ' spike_sorting_type])
disp(['Cue type : ' TaskCue])
disp('-----------------------------------------------------------')
disp(['Current save mode is : ' num2str(save_data)]);
session = hst.Session(session_dates{n_session}, subject);
taskfiles = session.getTaskFiles('GraspObject');
%pwd = 'C:\Users\macthurston\Documents\GitHub\project_grasp_object_interaction'; % location on this computer
%Extract correct datasets from excel files
filename = [subject_id '_good_trials_' TaskCue '.xlsx'];
[numb,txt,raw] = xlsread(fullfile(pwd,'ExcelFiles',filename));
session_date = str2double(session_dates{n_session});
good_datablocks = numb(session_date==numb(:,1), 2:end);
good_datablocks(isnan(good_datablocks)) = [];
if (length(good_datablocks) <1)
error ('Add to excel sheet, No good dataset present, skip or check for problem')
elseif good_datablocks == 0
error('No good dataset present for this day, has been checked, skip')
elseif any(ismember(good_datablocks, 1000))
warning('There is a problem with one of the datasets, ask Spencer? Removing it for now');
good_datablocks(ismember(good_datablocks,1000)) = [];
else
disp('Everything seems ok');
end
disp(['Good_datasets : ' num2str(good_datablocks)]);
%%
%to verify length of time bins
time_bin_size = zeros(1,length(good_datablocks));
%Either sorting (sorted spikes), noisy (includes noise units), unsorted
%(unsorted data), smoothed (halfkerner = 0 and causal = 0, how much the
%neuronal data is smoothed).
individual_runs = cell(1,length(good_datablocks));
featdef = cell(1,length(good_datablocks));
%predeclare variables
TrialNumber = [];
LabelNames = {};
TrialType = {};
TrialCue = [];
GoLabels = [];
session_date = [];
cueType = {};
time_phase_labels = [];
time_trial = [];
for n_dataset = 1:length(good_datablocks)
%load task
task = hst.Task(taskfiles{good_datablocks(n_dataset)});
%idx of trials to include
if flagRemoveErrorTrials
data_subset = setdiff(1:task.numTrials, preproc.errorTrialsPerTaskfile(task, subject_id));
else
data_subset = 1:task.numTrials;
end
numTrials = length(data_subset);
%extract and process neural data
individual_runs{n_dataset} = preproc.get_neural_data_paper(task,...
'spikes',spike_sorting_type,...
'ratefilt',true,...
'trials',data_subset,...
'min_timebin_length', min_timebin_length);
%save relevant variables for analysis
time_bin_size(n_dataset) = size(individual_runs{n_dataset}.fr_adapted,1);
individual_runs{n_dataset}.task.hDebug= []; %remove saving debugger, created errors later when loading the file
LabelNames_ind = {task.trialparams(:).action}';
individual_runs{n_dataset}.Labels = LabelNames_ind;
LabelNames = vertcat(LabelNames, LabelNames_ind(data_subset));
GraspType = cellfun(@(x) strsplit(x, '_'), LabelNames,'UniformOutput',false);
GraspType = cellfun(@(x) x{1,1}, GraspType,'UniformOutput',false);
TrialCue_ind = {task.trialparams(:).cue}';
individual_runs{n_dataset}.Cue = TrialCue_ind;
TrialCue = vertcat(TrialCue, TrialCue_ind(data_subset));
TrialType_ind = {task.trialparams(:).action}';
for i = 1:numel(TrialType_ind)
label = TrialType_ind{i}; % Extract the current trial label
if contains(label, 'Hand') && ~contains(label, 'Object')
TrialType_ind{i} = 'Hand';
elseif contains(label, 'Object') && ~contains(label, 'Hand')
TrialType_ind{i} = 'Object';
elseif contains(label, 'Hand') && contains(label, 'Object')
TrialType_ind{i} = 'Hand_Object';
else
% Handle cases where the label doesn't match any predefined pattern
TrialType_ind{i} = 'Unknown';
end
end
individual_runs{n_dataset}.TrialType = TrialType_ind;
TrialType = vertcat(TrialType, TrialType_ind(data_subset));
cueType_ind = {task.trialparams(:).cueType}';
cueType = vertcat(cueType, cueType_ind(data_subset));
session_date_val = {session_dates{n_session}};
session_date_ind = repmat(session_date_val,numTrials , 1);
session_date = vertcat(session_date, session_date_ind);
time_phase_labels_ind = repmat({individual_runs{n_dataset}.phase_labels'},numTrials , 1);
time_phase_labels = vertcat(time_phase_labels, time_phase_labels_ind);
time_trial_ind = repmat({individual_runs{n_dataset}.relt},numTrials , 1);
time_trial = vertcat(time_trial, time_trial_ind);
end
%when combining datasets of different blocks, select features that are
%present in each block. e.g. ratefilt might kick features our in block
%1 but not block 2 -> allows combining datasets
if (length(good_datablocks) >1)
[combined_all, IA, IB] = intersect(individual_runs{1,1}.featdef(:,{'nsp', 'channel' ,'unit'}),individual_runs{1,2}.featdef(:,{ 'nsp','channel' ,'unit'}));
c1 = individual_runs{1,1}.featdef(IA, 1:5); %KICK OUT DATASET
c2 = individual_runs{1,2}.featdef(IB, 1:5);
disp('----------------------------------------------------------------');
disp(['Original number of units for dataset 1: ' num2str(size(individual_runs{1,1}.featdef,1)) ' . Original number of units for dataset 2: ' num2str(size(individual_runs{1,2}.featdef,1))]);
disp(['Number of kept units: ' num2str(size(c1,1))]);
else %keep same format
[combined_all, IA, IB] = intersect(individual_runs{1,1}.featdef(:,{'nsp', 'channel' ,'unit'}),individual_runs{1,1}.featdef(:,{ 'nsp', 'channel' ,'unit'}));
end
%if there are more than 2 dataset, repeat so that all combined dataset
%include the same features
if length(good_datablocks) > 2
for kk = 3:(length(good_datablocks))
[combined_all, IA, IB] = intersect(combined_all, individual_runs{1,kk}.featdef(:,{ 'nsp', 'channel' ,'unit'}));
disp(['Original number of units for dataset' num2str(kk) ' : ' num2str(size(individual_runs{1,kk}.featdef,1))]);
disp(['Number of kept units: ' num2str(size(combined_all,1))]);
end
end
% Adapt the length of the bins to the shortest one for fr_adapted
%%
featdef_adapted = [];
SMG_Go = [];
PMV_Go = [];
S1X_Go = [];
AIP_Go = [];
M1_Go = [];
dlPFC_Go = [];
dPca_data_tmp = [];
for n_dataset = 1:length(good_datablocks)
featdef_ind = individual_runs{1,n_dataset}.featdef;
feature_index_to_keep= ismember(featdef_ind(:,{ 'nsp', 'channel' ,'unit'}),combined_all);
%find index of features present in both datasets
%adapt featureset and data according to features to keep
featdef_ind_sub = featdef_ind(feature_index_to_keep,:);
dataset_channel = featdef_ind_sub.dataset_channel;
channel = featdef_ind_sub.channel;
data_ind = individual_runs{1, n_dataset}.fr_adapted;
data_ind = data_ind(:,feature_index_to_keep,:);
pca_tmp = permute(data_ind,[2,1,3]);
dPca_data_tmp = cat(3,dPca_data_tmp, pca_tmp);
%separate channels according to brain area
if strcmp(subject_id, 's2')
SMG_idx = channel <= 96 .* ismember(featdef_ind_sub.nsp_name, 'APX');
PMV_idx = logical((channel > 96 & channel <= 224) .* ismember(featdef_ind_sub.nsp_name, 'APX'));
S1_idx = channel <= 96 & ismember(featdef_ind_sub.nsp_name, 'S1X_S1');
AIP_idx = dataset_channel < 0; %does not exist for s2
M1_idx = dataset_channel < 0; %does not exist for s2
dlPFC_idx = dataset_channel < 0; %does not exist for s2
%SMG_idx = dataset_channel <= 96 .* ismember(featdef_ind_sub.nsp_name, 'APX');
%PMV_idx1 = (dataset_channel > 96 & dataset_channel <= 224) .* ismember(featdef_ind_sub.nsp_name, 'APX');
%S1_idx2 = dataset_channel > 225 & ismember(featdef_ind_sub.nsp_name, 'S1X_S1');
%AIP_idx = dataset_channel < 0; %does not exist for s2
%M1_idx = dataset_channel < 0; %does not exist for s2
% if nnz(PMV_idx) ~= nnz(PMV_idx1)
% keyboard
% %problem with separating channels into appropriate brian
% %area
% end
elseif strcmp(subject_id, 's3')
%implement dataset channels for s3 for SMG, PMv and S1
SMG_idx = ismember(dataset_channel,[129:160, 225:256]);
PMV_idx = ismember(dataset_channel,[161:224]);
S1_idx = ismember(dataset_channel,[(1:128) + 256]);
AIP_idx = ismember(dataset_channel, [1:32, 97:128]);
M1_idx = ismember(dataset_channel,[33:96]);
dlPFC_idx = dataset_channel < 0; %does not exist for s3
elseif strcmp(subject_id, 's4')
%implement dataset channels for s4 for SMG, dlPFC, AIP, M1 and S1
SMG_idx = ismember(dataset_channel,[129:160, 225:256]);
AIP_idx = ismember(dataset_channel,[161:224]);
S1_idx = ismember(dataset_channel,[(1:128) + 256]);
M1_idx = ismember(dataset_channel, [1:32, 97:128]);
dlPFC_idx = ismember(dataset_channel,[33:96]);
PMV_idx = dataset_channel < 0; %does not exist for s4
else
keyboard
% add participant
end
if nnz(unique(time_bin_size)) > 1
keyboard
end
Brain_idx = [SMG_idx, PMV_idx, S1_idx, AIP_idx, M1_idx, dlPFC_idx];
Brain_areas = {'SMG', 'PMV', 'S1', 'AIP', 'M1','dlPFC'};
%separate dataset channels per brain area
SMG_Go_ind = arrayfun(@(x) data_ind(:,SMG_idx,x), 1:individual_runs{1, n_dataset}.numTrials,'UniformOutput', false)';
PMV_Go_ind = arrayfun(@(x) data_ind(:,PMV_idx,x), 1:individual_runs{1, n_dataset}.numTrials,'UniformOutput', false)';
S1_Go_ind = arrayfun(@(x) data_ind(:,S1_idx,x), 1:individual_runs{1, n_dataset}.numTrials,'UniformOutput', false)';
AIP_Go_ind = arrayfun(@(x) data_ind(:,AIP_idx,x), 1:individual_runs{1, n_dataset}.numTrials,'UniformOutput', false)';
M1_Go_ind = arrayfun(@(x) data_ind(:,M1_idx,x), 1:individual_runs{1, n_dataset}.numTrials,'UniformOutput', false)';
dlPFC_Go_ind = arrayfun(@(x) data_ind(:,dlPFC_idx,x), 1:individual_runs{1, n_dataset}.numTrials,'UniformOutput', false)';
%concatenate together
SMG_Go = vertcat(SMG_Go, SMG_Go_ind);
PMV_Go = vertcat(PMV_Go, PMV_Go_ind);
S1X_Go = vertcat(S1X_Go, S1_Go_ind);
AIP_Go = vertcat(AIP_Go, AIP_Go_ind);
M1_Go = vertcat(M1_Go, M1_Go_ind);
dlPFC_Go = vertcat(dlPFC_Go, dlPFC_Go_ind);
end
TrialNumber = 1:length(SMG_Go);
GoLabels = cell(size(TrialNumber))';
if strcmp(subject_id, 's2')
Go_data = [array2table(TrialNumber') cell2table(LabelNames) cell2table(GraspType) cell2table(TrialType) array2table(TrialCue) ...
cell2table(cueType) cell2table(SMG_Go) cell2table(PMV_Go) cell2table(S1X_Go) cell2table(GoLabels) ...
cell2table(session_date) cell2table(time_phase_labels) cell2table(time_trial)];
elseif strcmp(subject_id, 's3')
Go_data = [array2table(TrialNumber') cell2table(LabelNames) cell2table(GraspType) cell2table(TrialType) array2table(TrialCue) ...
cell2table(cueType) cell2table(SMG_Go) cell2table(PMV_Go) cell2table(S1X_Go) cell2table(AIP_Go) cell2table(M1_Go) cell2table(GoLabels) ...
cell2table(session_date) cell2table(time_phase_labels) cell2table(time_trial)];
elseif strcmp(subject_id, 's4')
Go_data = [array2table(TrialNumber') cell2table(LabelNames) cell2table(GraspType) cell2table(TrialType) array2table(TrialCue) ...
cell2table(cueType) cell2table(SMG_Go) cell2table(dlPFC_Go) cell2table(S1X_Go) cell2table(AIP_Go) cell2table(M1_Go) cell2table(GoLabels) ...
cell2table(session_date) cell2table(time_phase_labels) cell2table(time_trial)];
end
if flag_dPCA
% pred data for dPCA
LabelsInd = (preproc.image2class_simple(LabelNames))';
numCueTypes = numel(unique(cueType));
numClasses = numel(unique(LabelsInd));
%separate fr per cue type
frPerCueType = arrayfun(@(x) dPca_data_tmp(:,:,ismember(cueType, x)), unique(cueType), 'UniformOutput', false);
LabelsPerCueType = arrayfun(@(x) LabelsInd(ismember(cueType, x)), unique(cueType), 'UniformOutput', false);
if strcmp(subject_id, 's2')
trialPerWord = 8;
elseif strcmp(subject_id, 's3')
trialPerWord = 16;
elseif strcmp(subject_id, 's4')
trialPerWord = 16;
end
%format for dPCA analysis
dPCAData = zeros(size(frPerCueType{1},1),numCueTypes, numClasses, size(frPerCueType{1},2), trialPerWord);
for n_cue = 1:numCueTypes
%firing rate per condition
frPerCondition = arrayfun(@(x) frPerCueType{n_cue}(:,:,LabelsPerCueType{n_cue} == x), unique(LabelsInd), 'UniformOutput', false);
%dPCA requires that the data has the same number of repetitions each
%time -> if one dataset does not have enough repetitions, complete it by
%the average of the other trials
trSize = cell2mat(cellfun(@(x) size(x,3), frPerCondition, 'UniformOutput', false));
%find groups with missing trials
trAdapt = find(trSize ~= trialPerWord);
for n_tr = 1:length(trAdapt)
idxToChange = trAdapt(n_tr);
%calculate average FR per condition
meanToAdd = nanmean(frPerCondition{idxToChange},3);
lenToChange = trialPerWord - trSize(idxToChange);
%add average FR to get 16 trials per repetitions
for toAdd = 1:lenToChange
frPerCondition{idxToChange}(:,:,trSize(idxToChange) + toAdd) = meanToAdd;
end
end
for n_classes = 1:numClasses
dPCAData(:,n_cue,n_classes,:,:) = frPerCondition{n_classes};
end
end
dPCAPerArea = arrayfun(@(x) dPCAData(Brain_idx(:,x),:,:,:,:), 1:size(Brain_idx,2), 'UniformOutput', false);
dPCA = cell(size(TrialNumber))';
dPCA(1:5) = dPCAPerArea;
dPCA{6} = Brain_areas;
Go_data = [Go_data cell2table(dPCA)];
end
frPerChannelAll = arrayfun(@(x) dPca_data_tmp(Brain_idx(:,x),:,:), 1:size(Brain_idx,2), 'UniformOutput', false);
frPerChannel = cell(size(TrialNumber))';
frPerChannel(1:length(frPerChannelAll)) = frPerChannelAll;
frPerChannel{length(frPerChannelAll)+1} = Brain_areas;
Go_data = [Go_data cell2table(frPerChannel)];
filename_save = [subject_id '_' session_dates{n_session} '_' spike_sorting_type '_' TaskCue '.mat'];
disp(['Processed file ' filename_save])
filename_save = fullfile(save_data_pathway,filename_save);
save(filename_save, 'Go_data', 'individual_runs', '-v7.3');
end
keyboard
%%
%combine data together
% TO DO: vertically concatenate tables together
% think about that last dataaset only has 156 on average timebins -> where
% exactly do we lose timebins, e.g. in whcih phase? could be all slightly
% misaligned to be honest.. but it is what it is. I also should average
% time phases for each session individually for classification purposes at
% least (does not really work for bin per bin regression analysis).
% Combine datasets into one
%subject_id = 's3'; % s2 or p3 or n1
%spike_sorting_type = 'unsorted_aligned_thr_-4.5';
%spike_sorting_type = 'unsorted_aligned_noratefilt_4.5';
%TaskCue = 'GraspObject_4S_Action';
%spike_sorting_type = 'sorting_aligned_thr_-4.5';
%spike_sorting_type = 'sorting_aligned_noratefilt_4.5';
%spike_sorting_type = 'unsorted_aligned_noratefilt';
%spike_sorting_type = 'unsorted_aligned';
%save_data_pathway = ['D:\Users\Sarah\Documents\Saved_Data\InternalSpeechPaper\' subject_id '\Data\IndividualFiles\' spike_sorting_type];
%save_data_pathway = ['C:\Users\Sarah\OneDrive - California Institute of Technology\Data\InternalSpeechPaper\' subject_id '\Data\IndividualFiles\' TaskCue '\' spike_sorting_type];
save_data_pathway = ['C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\' subject_id '\Data\IndividualFiles\' TaskCue '\' spike_sorting_type];
datafiles = dir([save_data_pathway '\*.mat']);
for n_session = 1:length(datafiles)
Data = load(fullfile(datafiles(n_session).folder, datafiles(n_session).name));
if n_session == 1
Go_data = Data.Go_data;
else
Go_data = vertcat(Go_data, Data.Go_data);
end
end
Go_data.TrialNumber = (1:size(Go_data,1))';
%transform name of condition into code
Go_data.GoLabels = (preproc.image2class_simple(Go_data.LabelNames))';
filename_save = ['Table_' subject_id '_' TaskCue '_' spike_sorting_type '.mat'];
save_data_pathway = ['C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\' subject_id '\Data'];
filename_save = fullfile(save_data_pathway,filename_save);
save(filename_save, 'Go_data', '-v7.3');
disp([ 'saved ' filename_save])