-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrasp_decoding.m
834 lines (663 loc) · 37.1 KB
/
grasp_decoding.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
clc
clear all
close all
spike_sorting_type = '_unsorted_aligned_thr_-4.5';
%taskName = 'GraspObject_4S_Action';
%taskName = 'GraspObject_Shuffled'; % shuffled images
%taskName = 'GraspObject_Varied_Size'; % varied object/aperature sizes
%taskName = 'GraspObject_GB_Images'; % for GB
taskName = 'GraspObject_Combined'; % for Combined task
subject_id = 's3';
% Data = load('C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\s3\Data\IndividualFiles\GraspObject\unsorted_aligned_thr_-4.5\s3_20230803_unsorted_aligned_thr_-4.5_GraspObject');
%Data = load('C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\s3\Data\IndividualFiles\GraspObject\unsorted_aligned_thr_-4.5\s3_20230724_unsorted_aligned_thr_-4.5_GraspObject');
% Data = load('C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\s3\Data\IndividualFiles\GraspObject\unsorted_aligned_thr_-4.5\s3_20230721_unsorted_aligned_thr_-4.5_GraspObject');
Data = load(['C:\Users\macthurston\OneDrive - Kaiser Permanente\CaltechData\GraspObject_project\' subject_id '\Data\Table_' subject_id '_' taskName spike_sorting_type]);
%%
if ~strcmp(taskName, 'GraspObject_Varied_Size')
Go_data = Data.Go_data;
if strcmp(taskName, 'GraspObject_Combined')
Go_data.TrialType(strcmp(Go_data.TrialType, 'Unknown')) = {'Combined'}; % adds in Combined as Trial type
% add in column with Object Type for Combined trials and original trial types (H, HO, O with Associated)
% Loop through each label and extract the object information
for i = 1:height(Go_data)
% Use regular expression to find the size keyword after the last underscore
tokens = regexp(Go_data.LabelNames{i}, '_(deck|block|rod|ball)$', 'tokens');
if ~isempty(tokens)
% tokens is a cell array; extract the size keyword from it
Go_data.ObjectType{i} = tokens{1}{1};
else
Go_data.ObjectType{i} = 'Associated';
end
end
color_info = {[.3632 .2266 .6055],[.1176 .5333 .8980],[.8471 .1059 .3765],[1 .7569 .0275]};
end
% remove faulty sessions, if any
error_session = {};
if strcmp(subject_id, 's2')
error_session = {'20231016'};
elseif strcmp(subject_id, 's3')
error_session = {};
end
if ~isempty(error_session)
condition = cellfun(@(x) strcmp(x, error_session), Go_data.session_date);
Go_data = Go_data(~condition,:);
end
unit_region = 'SMG';
brainAreas = Go_data.frPerChannel{6};
phase_time_idx = Go_data.time_phase_labels{1,1};
numPhases = numel(unique(phase_time_idx));
phaseTimeTmp = diff(phase_time_idx);
phase_changes(1) = 1;
phase_changes(2:numPhases) = find(phaseTimeTmp) + 1;
phaseNames = {'ITI', 'Cue', 'Delay', 'Action'};
%define brain region.
% loop to session days
% separate data into go and no go
% seperate data according to cue modality
%seperate according to task phases
%decode
sessions_all = unique(Go_data.session_date);
numSessions = numel(sessions_all);
uniqueCueTypes = {'Hand','Hand-Object','Object'};
if strcmp(taskName, 'GraspObject_Combined')
uniqueCueTypes = {'Combined','Hand','Hand-Object','Object'};
end
flagGoTrials = true; %if true, extract Go trials, if false, extract NoGo trials
% Initialize a matrix to store classification accuracy for all sessions
all_errTest = NaN(numSessions, numPhases, numel(uniqueCueTypes)); % for sep by Cue Modality
%all_errTest = NaN(numSessions, numPhases, numel(uniqueGraspTypes)); % for sep by Grasp Types
% Initialize a cell array to store confusion matrices for each phase
confMatAllSessions = cell(numSessions,numPhases); %cell(numSessions,numPhases); 1 bc only running for Cue rn
figure();
for n_session = 1:numSessions
disp(['Classification session ' sessions_all{n_session} ]);
%find idx of current session day
idxThisSession = ismember(Go_data.session_date, sessions_all(n_session));
%extract data from selected brain area
if strcmp('SMG', unit_region)
SessionData = Go_data.SMG_Go(idxThisSession,:);
elseif strcmp('PMV', unit_region)
SessionData = Go_data.PMV_Go(idxThisSession,:);
elseif strcmp('S1', unit_region)
SessionData = Go_data.S1X_Go(idxThisSession,:);
elseif strcmp('M1', unit_region)
SessionData = Go_data.M1_Go(idxThisSession,:);
elseif strcmp('AIP', unit_region)
SessionData = Go_data.AIP_Go(idxThisSession,:);
elseif strcmp('dlPFC', unit_region)
SessionData = Go_data.dlPFC_Go(idxThisSession,:);
else
error([unit_region ' does not exist '])
end
% skip session days that are empty - relevant for S1 session 20230810
if isempty(SessionData{1})
continue
end
% Z-scoring => calc the mean of the FR of each unit across all trials per timebin, not per phase)
num_trials = length(SessionData);
[num_timebins, num_units] = size(SessionData{1});
% reconfigure matrix to store all trials
all_data = NaN(num_timebins,num_units,num_trials); % 174 x 63 x 142
for t = 1:num_trials
all_data(:,:,t) = SessionData{t}; % (timebins x units) for each trial
end
% Compute the mean and SD across trials
mean_fr = mean(all_data, 3); % Result is (timebins x units)
std_fr = std(all_data, 0, 3); % (timebins x units)
std_fr(std_fr == 0) = 1; % Avoid division by zero by setting std_fr to 1 where it's zero
% Z-score normalization: (X - mean) / std
z_scored_fr = (all_data - mean_fr) ./ std_fr; % (timebins x units x trials)
% Initialize the cell array
z_scored_data = cell(num_trials, 1);
% Fill the cell array with z-scored data
for t = 1:num_trials
z_scored_data{t} = z_scored_fr(:,:,t); % Extract each trial's matrix
end
%labels
sessionLabels = Go_data.GoLabels(idxThisSession,:);
%trialType
trialTypeSession = Go_data.TrialType(idxThisSession,:);
% grasp labels
graspTypeSession = Go_data.GraspType(idxThisSession,:);
% object labels
objectTypeSession = Go_data.ObjectType(idxThisSession,:);
%get idx for Go or NoGo trials
GoNoGoidx = logical(cell2mat(Go_data.TrialCue(idxThisSession,:)));
time_phase_labels = Go_data.time_phase_labels(idxThisSession);
if flagGoTrials
SessionData = z_scored_data(GoNoGoidx);
sessionLabels = sessionLabels(GoNoGoidx);
time_phase_labels = time_phase_labels(GoNoGoidx);
trialTypeSession = trialTypeSession(GoNoGoidx);
graspTypeSession = graspTypeSession(GoNoGoidx);
objectTypeSession = objectTypeSession(GoNoGoidx);
else
SessionData = SessionData(~GoNoGoidx);
sessionLabels = sessionLabels(~GoNoGoidx);
time_phase_labels = time_phase_labels(~GoNoGoidx);
trialTypeSession = trialTypeSession(~GoNoGoidx);
end
% seperate data according to cue condition
unTrialType = unique(Go_data.TrialType);
% separate data according to grasp
unGraspType = unique(Go_data.GraspType);
% separate data according to object
unObjectType = unique(Go_data.ObjectType); % includes "Associated" currently
% loop through cue conditions
for n_type = 1:numel(unTrialType)
% find idx of trial type
trialTypeIdx = ismember(trialTypeSession, unTrialType(n_type));
% code for CMs of grasps and modalities separately
sessionLabels_modality = trialTypeSession;
sessionLabels_grasp = graspTypeSession;
sessionLabels_object = objectTypeSession;
% Convert modality labels ('Hand', 'HandObject', 'Object') to numerical values
modality_labels = {'Combined','Hand', 'Hand_Object', 'Object'};
grasp_labels = {'Lateral', 'MediumWrap', 'PalmarPinch', 'Sphere3Finger'};
object_labels = {'deck','block','rod','ball'};
sessionLabels_modality_num = zeros(size(sessionLabels_modality)); % Initialize numerical labels
sessionLabels_grasp_num = zeros(size(sessionLabels_grasp));
sessionLabels_object_num = zeros(size(sessionLabels_object));
% Loop through labels and assign numerical values
for i = 1:length(modality_labels)
sessionLabels_modality_num(strcmp(sessionLabels_modality, modality_labels{i})) = i;
end
for i = 1:length(grasp_labels)
sessionLabels_grasp_num(strcmp(sessionLabels_grasp, grasp_labels{i})) = i;
end
for i = 1:length(object_labels)
sessionLabels_object_num(strcmp(sessionLabels_object, object_labels{i})) = i;
end
% loop through task phases
for n_phase = 1:numPhases
data_per_phase_per_cue = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),SessionData(trialTypeIdx),time_phase_labels(trialTypeIdx), 'UniformOutput', false));
%data_per_phase = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),SessionData(1:128),time_phase_labels(1:128), 'UniformOutput', false)); %1:128 = H and HO
% [errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase_per_cue,sessionLabels(trialTypeIdx),'flagErrorMatrix', false, 'PCA_variance', 95,'flagLeaveOneOut', true); % original
%[errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase_per_cue,sessionLabels_grasp_num(trialTypeIdx),'flagErrorMatrix', false, 'PCA_variance', 95,'flagLeaveOneOut', true); % testing with my method to see if we still get same decoding
[errTrain, errTestTmp,~,~,confMat] = classification.LDA_classification_rep(data_per_phase_per_cue,sessionLabels_object_num(trialTypeIdx),'flagErrorMatrix', true, 'PCA_variance', 95,'flagLeaveOneOut', true);
%[errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase,sessionLabels_modality_num(1:128), 'flagErrorMatrix', false, 'PCA_variance', 95, 'flagLeaveOneOut', true);
errTest(n_phase,n_type) = (1-mean(errTestTmp))*100; % sub 1 for n_type when separating by condition first
title([ sessions_all{n_session} ' - ' unit_region ' - ' phaseNames{n_phase} ' - ' unTrialType{n_type}])
% Store the confusion matrix for this phase and session
confMatAllSessions{n_phase, n_session, n_type} = confMat;
data_per_phase_per_all = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),SessionData,time_phase_labels, 'UniformOutput', false));
% % confusion matrices
% if n_phase ~= 1
% %[errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase_per_all,sessionLabels, 'flagErrorMatrix', true, 'PCA_variance', 95, 'flagLeaveOneOut', true); % original
% [errTrain, errTestTmp,ConfMat] = classification.LDA_classification_rep(data_per_phase_per_all,sessionLabels_grasp_num,'flagErrorMatrix', true, 'PCA_variance', 95,'flagLeaveOneOut', true); % CM for grasps/modalities separately (can switch out sessionLabels_grasp/modality)
% % error matrices are generating properly but are not
% % saving values into ConfMat, rather the individual
% % classifications, so look into how to get the values
% % found when flagging ErrorMatrix
% % Store the confusion matrix
% confMatAllSessions{n_session, n_phase} = ConfMat;
% title([ sessions_all{n_session} ' - ' unit_region ' - ' phaseNames{n_phase} ])
% end
%[errTrain, errTestTmp,ConfMat] = classification.LDA_classification_rep(data_per_phase_per_all,sessionLabels_grasp_num,'flagErrorMatrix', false, 'PCA_variance', 95,'flagLeaveOneOut', true); % CM for grasps/modalities separately (can switch out sessionLabels_grasp/modality)
% Store the confusion matrix
%confMatAllSessions{n_session, n_phase} = ConfMat;
% % confusion matrices for F30 (Object decoding in one session)
% object_labels = sessionLabels(129:192,:);
% object_data = data_per_phase_per_all(129:192,:);
% if n_phase ~= 1
% [errTrain, errTestTmp, cm] = classification.LDA_classification_rep(object_data,object_labels, 'flagErrorMatrix', true, 'PCA_variance', 95, 'flagLeaveOneOut', true);
%
% title([unit_region ' - ' phaseNames{n_phase}])
% end
set(gca, 'FontSize', 12);
end
end
% Store the classification accuracy for each session
all_errTest(n_session, :, :) = errTest;
subplot(1,2,n_session) % code using var names instead of hard
% figure();
b = bar(errTest);
colors = cell2mat(color_info');
for n_color = 1:length(b)
b(n_color).FaceColor = colors(n_color,:);
end
%yline(1/numel(unique(sessionLabels(trialTypeIdx)))*100)
yline(1/numel(unique(unGraspType))*100)
ylim([0 100])
xticklabels(phaseNames)
% if n_session ==3
% legend(unTrialType, 'Interpreter','none')
% end
ylabel('Classification percentage [%]')
title(sessions_all{n_session})
%SessionData =
end
legend(unTrialType, 'Interpreter','none')
sgtitle(unit_region)
else
Go_data = Data.Go_data;
% add Aperature Size column
sizeKeywords = ['Small', 'Medium', 'Large'];
Go_data.Aperature_Size = cell(height(Go_data),1);
% Loop through each label and extract the size information
for i = 1:height(Go_data)
% Use regular expression to find the size keyword after the last underscore
tokens = regexp(Go_data.LabelNames{i}, '_(Small|Medium|Large)$', 'tokens');
if ~isempty(tokens)
% tokens is a cell array; extract the size keyword from it
Go_data.Aperature_Size{i} = tokens{1}{1};
end
end
% remove faulty sessions, if any
error_session = {};
if strcmp(subject_id, 's2')
error_session = {'20231016'};
elseif strcmp(subject_id, 's3')
error_session = {};
end
if ~isempty(error_session)
condition = cellfun(@(x) strcmp(x, error_session), Go_data.session_date);
Go_data = Go_data(~condition,:);
end
unit_region = 'AIP';
brainAreas = Go_data.frPerChannel{6};
phase_time_idx = Go_data.time_phase_labels{1,1};
numPhases = numel(unique(phase_time_idx));
phaseTimeTmp = diff(phase_time_idx);
phase_changes(1) = 1;
phase_changes(2:numPhases) = find(phaseTimeTmp) + 1;
phaseNames = {'ITI', 'Cue', 'Delay', 'Action'};
uniqueGraspTypes = unique(Go_data.GraspType);
uniqueCueTypes = unique(Go_data.TrialType);
uniqueAperatureSize = unique(Go_data.Aperature_Size); % comment out when not varied sizes
%define brain region.
% loop to session days
% separate data into go and no go
% seperate data according to cue modality
% separate according to grasp
%seperate according to task phases
%decode
sessions_all = unique(Go_data.session_date);
numSessions = numel(sessions_all);
flagGoTrials = true; %if true, extract Go trials, if false, extract NoGo trials
% Initialize a matrix to store classification accuracy for all sessions
all_errTest = NaN(numSessions, numPhases, numel(uniqueCueTypes)); % for sep by Cue Modality
%all_errTest = NaN(numSessions, numPhases, numel(uniqueGraspTypes)); % for sep by Grasp Types
%all_errTest = NaN(numSessions, numPhases, numel(uniqueAperatureSize)); % for sep by Aperature Size
%all_errTest = NaN(numSessions, numPhases); % unseparated
% Initialize a cell array to store confusion matrices for each phase
confMatAllSessions = cell(numSessions,numPhases,numel(uniqueCueTypes)); %grasp/cueType ; cell(numSessions,numPhases); 1 bc only running for Cue rn
% Original code
figure();
for n_session = 1:numSessions
disp(['Classification session ' sessions_all{n_session} ]);
%find idx of current session day
idxThisSession = ismember(Go_data.session_date, sessions_all(n_session));
%extract data from selected brain area
if strcmp('SMG', unit_region)
SessionData = Go_data.SMG_Go(idxThisSession,:);
elseif strcmp('PMV', unit_region)
SessionData = Go_data.PMV_Go(idxThisSession,:);
elseif strcmp('S1', unit_region)
SessionData = Go_data.S1X_Go(idxThisSession,:);
elseif strcmp('M1', unit_region)
SessionData = Go_data.M1_Go(idxThisSession,:);
elseif strcmp('AIP', unit_region)
SessionData = Go_data.AIP_Go(idxThisSession,:);
elseif strcmp('dlPFC', unit_region)
SessionData = Go_data.dlPFC_Go(idxThisSession,:);
else
error([unit_region ' does not exist '])
end
% skip session days that are empty - relevant for S1 session 20230810
if isempty(SessionData{1})
continue
end
% Z-scoring => calc the mean of the FR of each unit across all trials per timebin, not per phase)
num_trials = length(SessionData);
[num_timebins, num_units] = size(SessionData{1});
% reconfigure matrix to store all trials
all_data = NaN(num_timebins,num_units,num_trials); % 174 x 63 x 142
for t = 1:num_trials
all_data(:,:,t) = SessionData{t}; % (timebins x units) for each trial
end
% Compute the mean and SD across trials
mean_fr = mean(all_data, 3); % Result is (timebins x units)
std_fr = std(all_data, 0, 3); % (timebins x units)
std_fr(std_fr == 0) = 1; % Avoid division by zero by setting std_fr to 1 where it's zero
% Z-score normalization: (X - mean) / std
z_scored_fr = (all_data - mean_fr) ./ std_fr; % (timebins x units x trials)
% Initialize the cell array
z_scored_data = cell(num_trials, 1);
% Fill the cell array with z-scored data
for t = 1:num_trials
z_scored_data{t} = z_scored_fr(:,:,t); % Extract each trial's matrix
end
%labels
sessionLabels = Go_data.GoLabels(idxThisSession,:);
% grasp labels
graspTypeSession = Go_data.GraspType(idxThisSession,:);
%trialType
trialTypeSession = Go_data.TrialType(idxThisSession,:);
%AperatureSize
aperatureSizeSession = Go_data.Aperature_Size(idxThisSession,:);
%get idx for Go or NoGo trials
GoNoGoidx = logical(cell2mat(Go_data.TrialCue(idxThisSession,:)));
time_phase_labels = Go_data.time_phase_labels(idxThisSession);
if flagGoTrials
%SessionData = SessionData(GoNoGoidx);
z_scored_data = z_scored_data(GoNoGoidx);
sessionLabels = sessionLabels(GoNoGoidx);
time_phase_labels = time_phase_labels(GoNoGoidx);
trialTypeSession = trialTypeSession(GoNoGoidx);
graspTypeSession = graspTypeSession(GoNoGoidx);
aperatureSizeSession = aperatureSizeSession(GoNoGoidx);
else
SessionData = SessionData(~GoNoGoidx);
sessionLabels = sessionLabels(~GoNoGoidx);
time_phase_labels = time_phase_labels(~GoNoGoidx);
trialTypeSession = trialTypeSession(~GoNoGoidx);
aperatureSizeSession = aperatureSizeSession(~GoNoGoidx);
end
%seperate data according to cue modality
unTrialType = unique(Go_data.TrialType);
%seperate data according to cue modality
unAperature = unique(Go_data.Aperature_Size);
% separate data according to grasp
unGraspType = unique(Go_data.GraspType);
% loop through cue modalities/sizes/grasps
for n_type = 1:numel(unTrialType) %1:numel(unGraspType) %1:numel(unTrialType) %n_size = 1:numel(unAperature) %
% find idx of trial type
trialTypeIdx = ismember(trialTypeSession, unTrialType(n_type));
% find idx of size type
%trialSizeIdx = ismember(aperatureSizeSession, unAperature(n_size));
% find idx of grasp type
%trialGraspIdx = ismember(graspTypeSession, unGraspType(n_type));
sessionLabels_modality = trialTypeSession;
sessionLabels_grasp = graspTypeSession;
sessionLabels_size = aperatureSizeSession;
% Convert modality labels ('Hand', 'HandObject', 'Object') to numerical values
modality_labels = {'Hand', 'Hand_Object', 'Object'};
grasp_labels = {'Lateral', 'MediumWrap', 'PalmarPinch', 'Sphere3Finger'};
size_labels = {'Small', 'Medium', 'Large'};
sessionLabels_modality_num = zeros(size(sessionLabels_modality)); % Initialize numerical labels
sessionLabels_grasp_num = zeros(size(sessionLabels_grasp));
sessionLabels_size_num = zeros(size(sessionLabels_size));
% Loop through labels and assign numerical values
for i = 1:length(modality_labels)
sessionLabels_modality_num(strcmp(sessionLabels_modality, modality_labels{i})) = i;
end
for i = 1:length(grasp_labels)
sessionLabels_grasp_num(strcmp(sessionLabels_grasp, grasp_labels{i})) = i;
end
for i = 1:length(size_labels)
sessionLabels_size_num(strcmp(sessionLabels_size, size_labels{i})) = i;
end
% loop through task phases
for n_phase = 1:numPhases
% data_per_phase_per_cue = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),SessionData(trialTypeIdx),time_phase_labels(trialTypeIdx),'UniformOutput', false)); % original (sep by cue data)
%data_per_phase_per_size = cell2mat(arrayfun(@(x,y)
%mean(x{1,1}(y{:}==
%n_phase,:),1),SessionData(trialSizeIdx),time_phase_labels(trialSizeIdx),
%'UniformOutput', false)); % sep by size data
%data_per_phase_per_grasp = cell2mat(arrayfun(@(x,y)
%mean(x{1,1}(y{:}==
%n_phase,:),1),SessionData(trialGraspIdx),time_phase_labels(trialGraspIdx),
%'UniformOutput', false)); % sep by grasp data
%data_per_phase = cell2mat(arrayfun(@(x,y)
%mean(x{1,1}(y{:}==
%n_phase,:),1),SessionData,time_phase_labels,
%'UniformOutput', false)); % all data
z_data_per_phase_per_condition = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),z_scored_data(trialTypeIdx),time_phase_labels(trialTypeIdx),'UniformOutput', false)); % sep z-scored data by condition per phase
%z_data_per_phase_per_grasp = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),z_scored_data(trialGraspIdx),time_phase_labels(trialGraspIdx),'UniformOutput', false)); % sep by grasp data
% [errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase_per_cue,sessionLabels(trialTypeIdx),'flagErrorMatrix', false, 'PCA_variance', 95,'flagLeaveOneOut', true); % original
% [errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase_per_cue,sessionLabels_size_num(trialTypeIdx),'flagErrorMatrix', false, 'PCA_variance', 95,'flagLeaveOneOut', true); % classifying size from modality
[errTrain, errTestTmp,~,~,confMat] = classification.LDA_classification_rep(z_data_per_phase_per_condition,sessionLabels_size_num(trialTypeIdx),'flagErrorMatrix', true, 'PCA_variance', 95,'flagLeaveOneOut', true); % classifying size from modality using z-scored data
%[errTrain, errTestTmp,~,~,confMat] = classification.LDA_classification_rep(z_data_per_phase_per_grasp,sessionLabels_size_num(trialGraspIdx),'flagErrorMatrix', true, 'PCA_variance', 95,'flagLeaveOneOut', true); % classifying size from grasp using z-scored data
%[errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase_per_grasp,sessionLabels_size_num(trialGraspIdx),'flagErrorMatrix', false, 'PCA_variance', 95,'flagLeaveOneOut', true);
%[errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase,sessionLabels_modality_num, 'flagErrorMatrix', true, 'PCA_variance', 95, 'flagLeaveOneOut', true);
%title([ sessions_all{n_session} ' - ' unit_region ' - ' phaseNames{n_phase} ])
errTest(n_phase,n_type) = (1-mean(errTestTmp))*100;
% Store the confusion matrix for this phase and session
confMatAllSessions{n_session, n_phase, n_type} = confMat;
title([ sessions_all{n_session} ' - ' unit_region ' - ' phaseNames{n_phase} ' - ' unTrialType{n_type} ]) %grasp/trialType; works for TrialType but not GraspType?
%data_per_phase_per_all = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),SessionData,time_phase_labels,'UniformOutput', false)); % original
%z_data_per_phase_per_all = cell2mat(arrayfun(@(x,y) mean(x{1,1}(y{:}== n_phase,:),1),z_scored_data,time_phase_labels, 'UniformOutput', false));
% [errTrain, errTestTmp] = classification.LDA_classification_rep(z_data_per_phase_per_all,sessionLabels_size_num,'flagErrorMatrix', false, 'PCA_variance', 95,'flagLeaveOneOut', true); % classifying size using z-scored data
% errTest(n_phase) = (1-mean(errTestTmp))*100;
% confusion matrices
% if n_phase ~= 1
% %[errTrain, errTestTmp] = classification.LDA_classification_rep(data_per_phase_per_all,sessionLabels, 'flagErrorMatrix', true, 'PCA_variance', 95, 'flagLeaveOneOut', true); % original
% [errTrain, errTestTmp,trueLabels,predictedLabels,cm] = classification.LDA_classification_rep(z_data_per_phase_per_all,sessionLabels_grasp_num, 'flagErrorMatrix', true, 'PCA_variance', 95, 'flagLeaveOneOut', true);
% % Store the confusion matrix
% confMatAllSessions{n_session, n_phase} = cm;
% title([ sessions_all{n_session} ' - ' unit_region ' - ' phaseNames{n_phase} ])
% end
% % confusion matrices for F30 (Object decoding in one session)
% object_labels = sessionLabels(129:192,:);
% object_data = data_per_phase_per_all(129:192,:);
% if n_phase ~= 1
% [errTrain, errTestTmp] = classification.LDA_classification_rep(object_data,object_labels, 'flagErrorMatrix', true, 'PCA_variance', 95, 'flagLeaveOneOut', true);
%
% title([unit_region ' - ' phaseNames{n_phase}])
% end
set(gca, 'FontSize', 12);
end
end
% Store the classification accuracy for each session
all_errTest(n_session, :, :) = errTest;
subplot(4,2,n_session) % code using var names instead of hard
% figure();
bar(errTest)
%yline(1/numel(unique(sessionLabels(trialTypeIdx)))*100) % when using assigned session labels
yline((1/numel(uniqueAperatureSize))*100) % when classifying size
%yline((1/numel(uniqueGraspTypes))*100);
ylim([0 100])
xticklabels(phaseNames)
if n_session ==3
%legend(unTrialType, 'Interpreter','none') % sep by cue
legend(unGraspType, 'Interpreter','none') % sep by grasp
end
ylabel('Classification percentage [%]')
title(sessions_all{n_session})
%SessionData =
end
sgtitle(unit_region)
end
%% averaging CMs
for n_phase = 2:numPhases
% Initialize a figure for the current phase to display multiple confusion matrices (one for each grasp type)
figure('units','normalized','outerposition',[0 0 .95 0.4]);
for n_type = 1:numel(unTrialType) % grasp/trialType
% Initialize an empty matrix for the summed confusion matrix for the current phase and grasp type
confMatSize = size(confMatAllSessions{1, n_phase, n_type}); % Get size of the first confusion matrix for the phase and type
confMatSum = zeros(confMatSize); % Initialize the sum matrix with zeros
% Sum the confusion matrices across sessions for the current phase and grasp type
for n_session = 1:numSessions
cmx = confMatAllSessions{n_session, n_phase, n_type};
if ~isempty(cmx)
confMatSum = confMatSum + cmx;
end
end
% Calculate the average confusion matrix by dividing the sum by the number of sessions
confMatAvg = confMatSum / numSessions;
% Normalize each row (class-wise) by dividing by the sum of the row
confMatAvgNorm = round((confMatAvg ./ sum(confMatAvg, 2)) * 100);
% Create subplot for the current grasp type
subplot(1, numel(unTrialType), n_type); % numel(unGrasp/TrialType)
% Display the normalized average confusion matrix for this grasp type
cmx = confusionchart(confMatAvgNorm);
cmx.DiagonalColor = '#0072BD';
cmx.OffDiagonalColor = '#0072BD';
cmx.FontSize = 20;
cmx.Title = sprintf('Normalized Average Classification\n%s - %s - %s', unit_region, phaseNames{n_phase}, unTrialType{n_type}); %grasp/trialType
end
end
% for n_phase = 2:numPhases
% % Initialize an empty matrix for the summed confusion matrix for the current phase
% confMatSize = size(confMatAllSessions{1, n_phase}); % Get size of the first confusion matrix for the phase
% confMatSum = zeros(confMatSize); % Initialize the sum matrix with zeros
%
% % Sum the confusion matrices across sessions for the current phase
% for n_session = 1:numSessions
% cmx = confMatAllSessions{n_session, n_phase};
% if ~isempty(cmx)
% confMatSum = confMatSum + cmx;
% end
% end
%
% % Calculate the average confusion matrix by dividing the sum by the number of sessions
% confMatAvg = confMatSum / numSessions;
%
% % Normalize each row (class-wise) by dividing by the sum of the row
% confMatAvgNorm = round((confMatAvg ./ sum(confMatAvg, 2)) * 100);
%
% % Display the normalized average confusion matrix
% figure('Position', [100 100 750 750]);
% cmx = confusionchart(confMatAvgNorm);
% cmx.DiagonalColor = '#0072BD';
% cmx.OffDiagonalColor = '#0072BD';
% cmx.FontSize = 20;
% cmx.Title = sprintf('Normalized Average Classification Across Sessions\n%s - %s', unit_region, phaseNames{n_phase});
% end
%%
keyboard
%% ANOVA
[numSessions, numPhases, numModalities] = size(all_errTest);
% Loop through each phase
for n_phase = 1:numPhases
% Extract data for the current phase
phaseData = squeeze(all_errTest(:, n_phase, :)); % Shape: [numSessions, numModalities]
% Reshape data for ANOVA
data = [];
modality = [];
% Loop through each modality
for n_modality = 1:numModalities
% Append the classification percentage
data = [data; phaseData(:, n_modality)];
% Append modality identifier
modality = [modality; repmat(n_modality, numSessions, 1)];
end
% Convert modality to categorical for ANOVA
modality = categorical(modality);
% Create a table with the reshaped data
dataTable = table(data, modality);
% Perform ANOVA for the current phase
[p, tbl, stats] = anova1(dataTable.data, dataTable.modality, 'off');
% Display ANOVA results
disp(['Phase ' num2str(n_phase) ':']);
disp(['p-value = ' num2str(p)]);
% Perform post-hoc tests if ANOVA is significant
if p < 0.05
[c, m, h, gnames] = multcompare(stats, 'CType', 'tukey-kramer');
disp('Post-hoc test results:');
disp(c);
end
end
%% if RM ANOVA is required:
% % ANOVA
% [numSessions, numPhases, numModalities] = size(all_errTest);
%
% for n_phase = 1:numPhases
% % Extract data for the current phase
% phaseData = squeeze(all_errTest(:, n_phase, :)); % Shape: [numSessions, numModalities]
%
% % Convert data to table format
% modality = repmat((1:numModalities)', numSessions, 1);
% data = phaseData(:);
%
% % Create a table with the reshaped data
% dataTable = table(data, categorical(modality), 'VariableNames', {'Data', 'Modality'});
%
% % Specify the within-subject factor (the modalities)
% WithinDesign = table({'1'; '2'; '3'}, 'VariableNames', {'Modality'});
%
% % Fit a repeated measures model
% rm = fitrm(dataTable, 'Data ~ Modality', 'WithinDesign', WithinDesign);
%
% % Perform repeated measures ANOVA
% ranovatbl = ranova(rm);
%
% % Display the ANOVA table
% disp(['Phase ' num2str(n_phase) ':']);
% disp(ranovatbl);
%
% % Perform post-hoc tests if ANOVA is significant
% if ranovatbl.pValue(1) < 0.05
% [c, m, h, gnames] = multcompare(ranova(rm), 'CType', 'tukey-kramer'); %multcompare doesn't work with rm??
% disp('Post-hoc test results:');
% disp(c);
% end
% end
%% plot all classification percentages together with SD
% Calculate the mean and standard deviation across sessions
mean_errTest = squeeze(mean(all_errTest, 1, 'omitnan')); % 2D matrix: [numPhases, numTrialTypes]
std_errTest = squeeze(std(all_errTest, 0, 1, 'omitnan')); % Same dimensions
% Plot the average performance with error bars
figure('units','normalized','outerposition',[0 0 .2 0.25]);
hold on;
% Create a bar plot with phases on the x-axis
bar_handle = bar(mean_errTest);
% colors = cell2mat(color_info');
% for n_color = 1:length(bar_handle)
% bar_handle(n_color).FaceColor = colors(n_color,:);
% end
% Add error bars
numPhases = size(mean_errTest, 1);
for n_type = 1:numel(unGraspType) %(unGraspType) %(unTrialType)
% Get the X positions for the current group of bars
xPositions = bar_handle(n_type).XEndPoints;
% Plot the error bars
errorbar(xPositions, mean_errTest(:, n_type), std_errTest(:, n_type), 'k.', 'LineWidth', 1.5);
end
% xPositions = bar_handle.XEndPoints; % these two lines are for unseparated data (ie. the entire dataset)
% errorbar(xPositions, mean_errTest(:, :), std_errTest(:, :), 'k.', 'LineWidth', 1.5);
% Customize plot appearance
%chance = 1/(numel(unGraspType))*100;
chance = 1/(numel(uniqueAperatureSize))*100;
yline(chance,'--k','LineWidth',1.5);
ylim([0 100]);
xticks(1:numel(phaseNames));%numPhases);
xticklabels(phaseNames);
ylabel('Classification percentage [%]');
yticks([0 50 100]);
%legend(unTrialType, 'Interpreter', 'none');
title(unit_region);
set(gca, 'FontSize', 12);
hold off;
%% plot average confusion matrix per phase
% Calculate the average confusion matrix across sessions for each phase
for n_phase = 1:numPhases
confMatAllSessions{n_phase} = confMatAllSessions{n_phase} / numSessions;
end
for n_phase = 2:numPhases
figure;
confusionchart(confMatAllSessions{n_phase}, unique(sessionLabels), 'RowSummary', 'row-normalized', 'ColumnSummary', 'column-normalized');
title(['Average Confusion Matrix - ' unit_region ' - ' phaseNames{n_phase}]);
set(gca, 'FontSize', 12);
end
%% F30 grasp plot
% figure('Position',[500 500 225 300]);
% region_cue = errTest(2,1:2); % (phase, conditions)
% h = bar(region_cue,'FaceColor','flat');
% h.CData(1,:) = [0.1176, 0.5333, 0.8980];
% h.CData(2,:) = [0.8471, 0.1059, 0.3765];
% %h.CData(3,:) = [1 .7569 .0275];
% yline(1/numel(unique(sessionLabels(trialTypeIdx)))*100,'LineStyle','--','LineWidth',2)
% ylim([0 100])
% xticklabels({'G','G+O'})
% xlim([0.5, 2.5]);
% %ylabel('Classification percentage [%]')
% yticks([0 50 100])
% title([unit_region ' - Cue'])
% set(gca, 'FontSize', 15);
%% F30 cue condition plot
% figure('Position',[500 500 225 300]);
% region_cue = [77, 88, 91]; % value during Cue
% h = bar(region_cue,'FaceColor','flat');
% h.CData(1,:) = [0.7969, 0.4726, 0.6523];
% h.CData(2,:) = [0.3359, 0.7031, 0.9101];
% h.CData(3,:) = [0, 0.6171, 0.4492];
% yline(50,'LineStyle','--','LineWidth',2)
% ylim([0 100])
% xticklabels({'AIP','SMG','M1'})
% xlim([0.5, 3.5]);
% ylabel('Classification percentage [%]')
% yticks([0 50 100])
% % title(unit_region)
% set(gca, 'FontSize', 15);