-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
44 lines (40 loc) · 1.3 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 27 19:48:52 2020
@author: Amoko
"""
import os
class MyConfig():
def __init__(self):
# 1 path
path_dataset = '/data/amoko/data/0814class18N13S4P1_LG9split'
dataset_name = os.path.basename(path_dataset)
model_name = 'Efficientnet3'
self.path_class = '{}_class.pkl'.format(dataset_name)
self.path_dataset = path_dataset
self.path_model_prefix = '{}.{}'.format(model_name, dataset_name)
# 2 train
self.USE_RED_LOSS = True
self.NUM_CLASSES = 18
self.NUM_WORKERS = 8
self.NUM_EPOCHS = 1000
self.gpu = '0,2,3'
#self.gpu = '2'
self.NUM_GPUS = len(self.gpu.split(','))
self.distributed = self.NUM_GPUS > 1
self.amp = True
train_mode = 'freeze_conv'
#train_mode = 'ultimate'
self.train_mode = train_mode
if self.train_mode == 'freeze_conv':
self.BATCH_SIZE = 256
self.LR = 1e-3
else:
self.BATCH_SIZE = 64
self.LR = 1e-4
if self.amp:
self.BATCH_SIZE = self.BATCH_SIZE * 2
# only for ultimate
ACC = 0.8902
self.path_model_saved = '{}.{:.4f}'.format(self.path_model_prefix, ACC)