-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathParser.cpp
1396 lines (1243 loc) · 47.2 KB
/
Parser.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "Parser.h"
#include "Directory.h"
#include "Object.h"
#include "ObjectTree.h"
#include "FailureOr.h"
#include "AST.h"
#include "Interpreter.h"
#define SYMBOL_ENUMS(a,b) ((a << 9) | b)
Program Parser::parse() // This Parser is w/o question the hardest part of this to write.
{
if(tokens.size() == 0) {
ParserError(nullptr,"Empty programs are not valid!");
return std::move(t_program);
}
std::vector<ClassDefinition*> classdef_list;
//Step 1. Generate the AST
for (tokenheader = 0; tokenheader < tokens.size(); ++tokenheader)
{
//Expecting: a bunch of classdefs and funcdefs
//Both of these start with a directory that ends in a '/'Name, so lets read that in
Token* t = tokens[tokenheader];
std::string dir_name;
if (t->class_enum() == Token::cEnum::DirectoryToken)
{
dir_name = static_cast<DirectoryToken*>(t)->dir;
}
else if (t->class_enum() == Token::cEnum::ConstructionToken) // New() override, it seems
{
dir_name = static_cast<ConstructionToken*>(t)->dir + "/#constructor";
}
else
{
ParserError(t, "Unexpected Token at global-scope definition when Directory was expected!");
}
++tokenheader;
if(tokenheader >= tokens.size())
ParserError(t, "Unexpected end of file!");
//The next token has to be either a '(', which disambiguates us into being a funcdef,
//or a '{', which brings us towards being a classdef.
t = tokens[tokenheader];
if (t->class_enum() != Token::cEnum::PairSymbolToken)
{
ParserError(t, "Unexpected Token at global-scope definition!");
continue; // ?????????
}
PairSymbolToken st = *static_cast<PairSymbolToken*>(t); // Allah
PairSymbolToken::pairOp pop = st.t_pOp;
if (pop == PairSymbolToken::pairOp::Bracket || !st.is_start)
{
ParserError(t, "Unexpected PairSymbol at global-scope definition!");
continue;
}
if (pop == PairSymbolToken::pairOp::Paren) // THIS IS A FUNCDEF! HOT DAMN we're getting somewhere
{
int close = find_closing_pairlet(PairSymbolToken::pairOp::Paren, tokenheader + 1);
std::vector<ImmutableString> pirate_noise;
if (close != tokenheader + 1)
{
pirate_noise.push_back(readName(tokenheader+1)); // Updates tokenheader hopefully
for (int where = tokenheader; where < close; ++where)
{
if (tokens[where]->class_enum() != Token::cEnum::CommaToken)
{
ParserError(tokens[where], "Unexpected Token when Comma expected!");
}
++where;
if (where == close)
ParserError(tokens[where], "Missing parameter name in FunctionDefinition!");
if (tokens[where]->class_enum() != Token::cEnum::WordToken)
ParserError(tokens[where], "Unexpected Token when ParameterName expected!");
pirate_noise.push_back(static_cast<WordToken*>(tokens[where])->word);
}
}
std::vector<Expression*> funcblock = readBlock(BlockType::Function,close+1, static_cast<int>(tokens.size()-1));
--tokenheader;
Function* func = new Function(dir_name, std::move(funcblock), std::move(pirate_noise), t->line);
if (Directory::DotDot(dir_name) == "/") // If this is a classless function in the globalscope
t_program.set_func(dir_name, func);
else // This be a method! Avast!
t_program.set_meth(dir_name, func);
continue;
}
else if (pop == PairSymbolToken::pairOp::Brace) // THIS IS A CLASSDEF!
{
#ifdef LOUD_TOKENHEADER
std::cout << "Classdefinition began read at tokenheader " << std::to_string(tokenheader) << std::endl;
#endif
std::vector<LocalAssignmentStatement*> lasses = readClassDef(tokenheader, static_cast<int>(tokens.size() - 1));
classdef_list.push_back(new ClassDefinition(dir_name, lasses, t->line));
#ifdef LOUD_TOKENHEADER
std::cout << "Classdefinition set tokenheader for globalscope to " << std::to_string(tokenheader) << std::endl;
#endif
--tokenheader; // Handle imminent increment
continue;
//ParserError(t, "Classdefs are not implemented yet!");
}
else
{
ParserError(t, "Unexpected Pairsymbol at global-scope definition!");
continue;
}
}
//Step 2. Generate the object tree
generate_object_tree(classdef_list);
for(ClassDefinition* ptr : classdef_list)
delete ptr;
//Step 3. Evaluate all constant expressions
Interpreter parsetime_interp = Interpreter(t_program, false);
parsetime_interp.push_stack("#init", nullptr); // the Interpreter expects there to always be a topmost stack layer (since usually /main() is there). So here's our own, fake, main.
for (ConstExpression* ptr : ConstExpression::Registry()) {
parsetime_interp.push_block();
ptr->transmute(parsetime_interp);
parsetime_interp.pop_block();
if (parsetime_interp.error) {
parsetime_interp.UncaughtRuntime(parsetime_interp.error);
t_program.is_malformed = true;
}
}
parsetime_interp.pop_stack();
return std::move(t_program);
}
void Parser::generate_object_tree(std::vector<ClassDefinition*>& cdefs)
{
/*
So in general we would like for the properties and methods of object types to be "cooked,"
insofar that you can get a handle on, an ObjectType during runtime and it'll have all the properties and methods pre-inherited from object types higher in the hierarchy.
Making this though is a bit of a headache, since the user programmer can declare functions and classdefs anywhere within the script, in any order.
Further, a type may be poofed into existence by a singular function definition and nowhere else;
an object type which inherits from its parent in all ways spare that one function.
Here is my attempt at resolving the problem, written at three in the morning. Enjoy.
FIXME: While this probably does work, its complexity is practically quadratic, and will have to be reworked to improve its performance later on.
Additionally, this doesn't allow for correct overloading of the /table class.
*/
//Step 0. Define any weird native classes that might exist (so the user may overload them with novel behavior)
//Step 1. Get a list of all classes that exist in some way
uncooked_types.merge(t_program.construct_natives()); //Aghast! C++17 be required to run this line!
std::unordered_set<std::string> list_of_funcs; // Not as used here, mostly for the ParserError
for (auto it = cdefs.begin(); it != cdefs.end(); ++it) // Ask all the classdefs
{
ClassDefinition* cdptr = *it;
ImmutableString cdstr = cdptr->direct;
if (uncooked_types.count(cdstr.to_string()))
{
ParserError(nullptr, "Duplicate class definition detected!"); // FIXME: Allow for this (with perhaps suppressable warnings regardless)
continue;
}
ObjectType* objtype = new ObjectType(cdstr, cdptr->resolve_properties(*this));
uncooked_types[cdstr.to_string()] = objtype; // Writing a null to here, I think, still works for creating the entry. Suck it, Lua!
}
for (auto it = t_program.definedMethods.begin(); it != t_program.definedMethods.end(); ++it) // Ask all the functions
{
Function *const fptr = *it;
const std::string& function_fullname = fptr->get_name();
std::string function_shortname = Directory::lastword(function_fullname);
if (list_of_funcs.count(function_fullname))
{
ParserError(nullptr, "Duplicate function definition detected!"); // FIXME: Allow for this (with suppressable warnings anyways)
continue;
}
list_of_funcs.insert(function_fullname);
std::string dir_f = Directory::DotDot(function_fullname);
if (!uncooked_types.count(dir_f)) // If our type doesn't exist
{
ObjectType* objtype = new ObjectType(dir_f);
objtype->set_typemethod(*this, function_shortname, fptr);
uncooked_types[dir_f] = objtype; // Make it so!
}
else
{
uncooked_types[dir_f]->set_typemethod(*this, function_shortname, fptr);
}
}
ObjectTree joao; //Wow, it's the real Jo�o Gaming!
for (auto it = uncooked_types.begin(); it != uncooked_types.end(); ++it)
{
joao.append(it.value());
}
#ifdef LOUD_AST
std::cout << "----\nClass Tree:\n";
joao.dump();
std::cout << "----\n";
#endif
t_program.definedObjTypes = std::move(uncooked_types); // They're cooked *at this point*, I will note
//Check to make sure that main was defined
if(!t_program.definedFunctions.lazy_at("main")) {
ParserError(tokens[0],"/main() function was never defined!");
}
return;
}
//Here-there-update; updates through readlvalue and readPower.
ASTNode* Parser::readUnary(int here, int there)
{
if (tokens[here]->class_enum() != Token::cEnum::SymbolToken)
return readPower(here, there);
UnaryExpression::uOps uh = symbol_to_uOp(static_cast<SymbolToken*>(tokens[here]));
if (uh == UnaryExpression::uOps::NoOp)
{
ParserError(tokens[here], "Unexpected symbol when unary operator was expected!");
}
return new UnaryExpression(uh, readPower(here+1,there), tokens[here]->line);
}
//Vaguely similar and correlated to the behavior of readBinExp's loop, except it collects all lvalues and then builds the exponent chain via iterating in reverse order
//Right-associativity, amirite?
ASTNode* Parser::readPower(int here, int there)
{
std::vector<ASTNode*> lvalues;
int where = here;
int last_power = here - 1;
for (; where <= there; ++where)
{
Token* t = tokens[where];
switch (t->class_enum())
{
case(Token::cEnum::PairSymbolToken): // WARNING: THIS IS A DUMB CTRL+C CTRL+V OF THE ANALOGOUS BLOCK IN READBINEXP(); SHOULD BE IDENTICAL!
{
PairSymbolToken pst = *static_cast<PairSymbolToken*>(t);
if (!pst.is_start)
ParserError(t, "Unexpected closing pairlet in BinaryExpression!");
int yonder = find_closing_pairlet(pst.t_pOp, where + 1);
if (yonder > there) // If down yonder is truly yonder
{
ParserError(t, "Could not find closing pairlet for open pairlet in BinaryExpression!");
}
where = yonder; // Expecting an imminent increment to make this point the correct place
continue;
}
case(Token::cEnum::EndLineToken):
goto READPOWER_LEAVE_POWERSEARCH;
case(Token::cEnum::KeywordToken):
ParserError(tokens[where], "Unexpected keyword in Expression!");
continue;
case(Token::cEnum::SymbolToken):
{
//This should just be '^' and nothing else; anything else implies a parsing error in this context.
SymbolToken* st = static_cast<SymbolToken*>(t);
if (st->len > 1 || st->get_symbol()[0] != '^') // Hardcoded to '^' for now
{
//ParserError(t, "Unexpected symbol when parsing PowerExpression!");
goto READPOWER_LEAVE_POWERSEARCH;
}
lvalues.push_back(readlvalue(last_power + 1, where - 1));
last_power = where;
continue;
}
default:
continue;
}
}
READPOWER_LEAVE_POWERSEARCH:
if (lvalues.empty()) // If we didn't find a power
return readlvalue(here, there); // then this is just a normal lvalue
// (a ^ (b ^ (c ^ d)))
ASTNode* powertower = readlvalue(last_power + 1, where - 1); // Add the final lvalue of the series of exponentiations, the "c" of a ^ b ^ c
for (auto it = lvalues.rbegin(); it != lvalues.rend(); ++it)
{
powertower = new BinaryExpression(BinaryExpression::bOps::Exponent, *it, powertower, tokens[here]->line);
}
return powertower;
}
//lvalue ::= 'null' | 'false' | 'true' | Numeral | LiteralString | tableconstructor | var_access | functioncall |'(' exp ')'
//WARNING: this CAN! return an lvalue in some contexts! (such as during interactive mode, or in any other circumstance where errors aren't fatal)
ASTNode* Parser::readlvalue(int here, int there) // Read an Expression where we know for certain that there's no damned binary operator within it.
{
#ifdef LOUD_TOKENHEADER
std::cout << "readlvalue starting at " << std::to_string(here) << std::endl;
#endif
Token* t = tokens[here];
ASTNode* lvalue = nullptr;
//First things first, lets find the "lvalue" of this expression, the thing on the left
switch (t->class_enum())
{
case(Token::cEnum::LiteralToken): // 'null' | 'false' | 'true'
{
LiteralToken lt = *static_cast<LiteralToken*>(t);
switch (lt.t_literal)
{
case(LiteralToken::Literal::Null):
{
lvalue = new Literal(Value());
break;
}
case(LiteralToken::Literal::False):
{
lvalue = new Literal(Value(false));
break;
}
case(LiteralToken::Literal::True):
{
lvalue = new Literal(Value(true));
break;
}
default:
ParserError(t, "Unknown LiteralToken type!");
break;
}
tokenheader = here + 1;
#ifdef LOUD_TOKENHEADER
std::cout << "readlvalue setting tokenheader to " << std::to_string(tokenheader) << std::endl;
#endif
break;
}
case(Token::cEnum::NumberToken): // Numeral
{
NumberToken nt = *static_cast<NumberToken*>(t);
if (nt.is_double)
{
lvalue = new Literal(Value(nt.num.as_double));
}
else
{
lvalue = new Literal(Value(nt.num.as_int));
}
tokenheader = here + 1;
#ifdef LOUD_TOKENHEADER
std::cout << "readlvalue setting tokenheader to " << std::to_string(tokenheader) << std::endl;
#endif
break;
}
case(Token::cEnum::StringToken): // LiteralString
{
StringToken st = *static_cast<StringToken*>(t);
Value val = Value(st.word);
lvalue = new Literal(val);
tokenheader = here + 1;
#ifdef LOUD_TOKENHEADER
std::cout << "readlvalue setting tokenheader to " << std::to_string(tokenheader) << std::endl;
#endif
break;
}
case(Token::cEnum::GrandparentToken):
case(Token::cEnum::ParentToken):
case(Token::cEnum::DirectoryToken):
case(Token::cEnum::WordToken): //functioncall | var_access
{
lvalue = readVarAccess(here, there);
if (tokenheader > there)
{
break;
}
//Now check to see if this is actually a function call
//If this fails it's okay; just means that it's a regular var_access, I think
Token* nexttoken = tokens[tokenheader];
if (nexttoken->class_enum() == Token::cEnum::PairSymbolToken)
{
PairSymbolToken* pst = static_cast<PairSymbolToken*>(nexttoken);
if (pst->is_start && pst->t_pOp == PairSymbolToken::pairOp::Paren) // I guess it is!
//functioncall ::= var_access '(' explist ')' [func_access]
{
int close = find_closing_pairlet(PairSymbolToken::pairOp::Paren, tokenheader+1);
if (close != tokenheader + 1)
lvalue = new CallExpression(lvalue, readArgs(tokenheader + 1, close - 1), tokens[here]->line);
else
lvalue = new CallExpression(lvalue, {},tokens[here]->line);
//Now check for any func_access
//(updates tokenheader for us :))
if (close + 1 >= there)
{
tokenheader = close + 1;
break;
}
readFuncAccess(lvalue, close + 1, there);
break;
}
}
break;
}
case(Token::cEnum::EndLineToken):
ParserError(t, "Endline found when lvalue was expected!");
break;
case(Token::cEnum::SymbolToken):
{
//This can basically only be an extraneous unary operator.
//We don't allow multiple unops to happen after each other, at least not yet, so...
ParserError(t, "Unexpected or underimplemented unary operation!");
break;
}
case(Token::cEnum::ConstructionToken): // directory '/New(' [explist] ')' [func_access]
{
ConstructionToken ct = *static_cast<ConstructionToken*>(t);
consume_paren(true, tokens[static_cast<size_t>(here)+1]);
int close = find_closing_pairlet(PairSymbolToken::pairOp::Paren, here + 2);
if (close != here + 2)
lvalue = new Construction(ct.dir, readArgs(here + 2, close - 1), tokens[here]->line);
else
lvalue = new Construction(ct.dir, {}, tokens[here]->line);
if (close + 1 >= there)
{
tokenheader = close + 1;
break;
}
readFuncAccess(lvalue, close + 1, there);
break;
}
case(Token::cEnum::PairSymbolToken): // tableconstructor | '(' exp ')'
{
const PairSymbolToken& pst = *static_cast<PairSymbolToken*>(t);
switch (pst.t_pOp)
{
default:
ParserError(t, "Unexpected or underimplemented use of PairSymbolToken!");
tokenheader = here + 1;
lvalue = new Literal(Value());
break;
case(PairSymbolToken::pairOp::Brace): // tableconstructor ::= '{' [exp] {',' exp} [',']'}' | '{'[Name '=' exp]{ ','[Name '=' exp] }[','] '}'
{
consume_open_brace(here);
tokenheader = here + 1;
//Try to read in the key-value version and fallback to the value-array one if it fails
Token* trytoken = tokens[tokenheader];
if (trytoken->class_enum() == Token::cEnum::WordToken || trytoken->class_enum() == Token::cEnum::StringToken)
{
//Not incrementing tokenheader yet since this is a bit of a peak-ahead
if (tokens[tokenheader + 1]->class_enum() == Token::cEnum::SymbolToken)
{
SymbolToken* st = static_cast<SymbolToken*>(tokens[tokenheader + 1]);
if (symbol_to_aOp(st) == AssignmentStatement::aOps::Assign)
{
//This is definitely Key-value pairs!
//'{'[Name '=' exp]{ ','[Name '=' exp] }[','] '}'
/*
FIXME:
Right now, this specific way to initialize a table has a snowflake ASTNode type to handle its execution.
In the future, it would probably be best to have this just pass into the normal /table constructor,
with each key-value pair being a Value of type Tuple (a thing that does not exist yet in this language)
*/
HashTable<std::string,ASTNode*> nodes;
int yonder = find_closing_pairlet(PairSymbolToken::pairOp::Brace, tokenheader + 2);
do
{
Token* nametoken = tokens[tokenheader];
std::string namestr;
if (nametoken->class_enum() == Token::cEnum::WordToken)
{
namestr = static_cast<WordToken*>(nametoken)->word.to_string();
}
else if (nametoken->class_enum() == Token::cEnum::StringToken)
{
namestr = static_cast<StringToken*>(nametoken)->word;
}
else
{
ParserError(nametoken, "Unexpected token when table key expected in table constructor!");
break; // Out of while(true)
}
++tokenheader;
//Consume an assign symbol
if (tokens[tokenheader]->class_enum() != Token::cEnum::SymbolToken || // Either not a symbol at all or
symbol_to_aOp(static_cast<SymbolToken*>(tokens[tokenheader])) != AssignmentStatement::aOps::Assign) // not '='
{
ParserError(tokens[tokenheader], "Unexpected token when '=' symbol expected in table constructor!");
break;
}
++tokenheader;
int valueyonder = find_comma(tokenheader, yonder - 1); // Where the value expression ought to end
ASTNode* valuenode;
if (!valueyonder) // Failed to find comma
{
valuenode = readExp(tokenheader, yonder - 1);
}
else
{
valuenode = readExp(tokenheader, valueyonder - 1);
++tokenheader; // Consume the comma
}
nodes[namestr] = valuenode;
} while (tokenheader < yonder);
lvalue = new BaseTableConstruction(std::move(nodes), tokens[tokenheader]->line);
tokenheader = yonder + 1;
break; // Out of case(PairSymbolToken::pairOp::Brace)
}
}
}
//Value array!
//'{' [exp] {',' exp}[',']'}'
int yonder = find_closing_pairlet(PairSymbolToken::pairOp::Brace, tokenheader);
if (yonder == tokenheader) // Special case where it's a blank init; "{}"
{
lvalue = new Construction("/table", {}, tokens[tokenheader]->line);
++tokenheader;
break;
}
std::vector<ASTNode*> nodes;
do
{
int valueyonder = find_comma(tokenheader, yonder - 1); // Where the value expression ought to end
if (!valueyonder) // Failed to find comma
{
nodes.push_back(readExp(tokenheader, yonder - 1));
}
else
{
nodes.push_back(readExp(tokenheader, valueyonder - 1));
++tokenheader; // Consume the comma
}
} while (tokenheader < yonder);
lvalue = new Construction("/table", nodes, tokens[tokenheader]->line);
tokenheader = yonder + 1; // Make sure we consume the ending brace
break;
}
case(PairSymbolToken::pairOp::Paren): // '(' exp ')'
consume_paren(true, t);
int close = find_closing_pairlet(PairSymbolToken::pairOp::Paren, here+1);
lvalue = readExp(here + 1, close - 1); // ReadExp will increment tokenheader for us, hopefully.
consume_paren(false); // Consumes that paren we found
}
break;
}
case(Token::cEnum::KeywordToken):
{
const KeywordToken& key_token = *static_cast<KeywordToken*>(t);
if (key_token.t_key == KeywordToken::Key::Const) {// 'const{' [block] '}'
if(is_interactive) {
ParserError(t,"Const blocks are not available in interactive mode.");
}
lvalue = new ConstExpression(readBlock(BlockType::Function, here + 1, there)); // readBlock just handles all the busy work for us here :)
}
break;
}
default:
ParserError(t, "Unexpected Token when reading lvalue!");
break;
}
if (!lvalue)
{
ParserError(t, "Failed to comprehend lvalue of Expression!");
lvalue = new Literal(Value());
}
return lvalue;
}
// Reads, from here to there, scanning for BinaryExpressions of its OperationPrecedence and lower
ASTNode* Parser::readBinExp(Scanner::OperationPrecedence op, int here, int there)
{
#ifdef LOUD_TOKENHEADER
std::cout << "readBinExp(" << Scanner::precedence_tostring(op) << ") starting at " << std::to_string(here) << std::endl;
#endif
/*
if (expect_close_paren)
std::cout << "I expect close paren!\n";
else
std::cout << "I don't expect close paren!\n";
*/
//std::cout << "Starting to search for operation " << Scanner::precedence_tostring(op) << "...\n";
if (op == Scanner::OperationPrecedence::Unary) // If we're at the near-bottom, evaluate a unary
{
return readUnary(here, there); // Hear-hear!
}
else if (op == Scanner::OperationPrecedence::Power)
{
return readPower(here, there);
}
ASTNode* lhs = nullptr;
int where = here;
//Now lets try to read the binary operation in question
for (; where <= there; ++where)
{
Token* t2 = tokens[where];
switch (t2->class_enum())
{
case(Token::cEnum::PairSymbolToken): // So the 'exp' grammarthingie doesn't really... care? about these pairsymbols?
{//So what we are to do, is leave them for readlvalue to pick up and think about. All we need to do is find our operators and do the recursive splitting around them.
PairSymbolToken pst = *static_cast<PairSymbolToken*>(t2);
if(!pst.is_start)
ParserError(t2, "Unexpected closing pairlet in BinaryExpression!");
int yonder = find_closing_pairlet(pst.t_pOp, where + 1);
if (yonder > there) // If down yonder is truly yonder
{
ParserError(t2, "Could not find closing pairlet for open pairlet in BinaryExpression!");
}
where = yonder; // Expecting an imminent increment to make this point the correct place
continue;
}
case(Token::cEnum::EndLineToken):
//++where; // Because all semicolons are explicitly consumed thru consume_semicolon(), hopefully, BinExp must leave pointing to the semicolon it found, if it did find one
goto READBOP_LEAVE_BOPSEARCH;
case(Token::cEnum::KeywordToken):
ParserError(tokens[where], "Unexpected keyword in Expression!");
continue;
case(Token::cEnum::SymbolToken):
{
BinaryExpression::bOps boopitybeep = readbOp(static_cast<SymbolToken*>(t2));
if (boopitybeep == BinaryExpression::bOps::NoOp)
{
continue;
}
else if (bOp_to_precedence.at(boopitybeep) == op) // WE GOT A HIT!
{
//ALL THIS ASSUMES LEFT-ASSOCIATIVITY, AS IN ((1 + 2) + 3) + 4
/*
So in some instances it's necessary to disambiguate whether a symbol is meant as a unary operation or a binary operation, such as with the minus sign (-).
The way that this is disambiguated is by determining if the symbol is at occurring at the very start of the expression, or immediately after another, different symbol;
"-A" and
"A+-B", for example.
readBinExp() doesn't really know or care about the distinction between these two things, but there does need to be the following special case to detect for a unary,
which is written generically in case other ambiguous unary/binary symbols are added to the language besides the minus symbol.
*/
if (here == where) // If this symbol occurred at the VERY start of this expression
{
//Then it's actually a unary operation I think
lhs = readUnary(here, there);
where = tokenheader - 1;
continue;
}
if (!lhs)
{
lhs = readBinExp(static_cast<Scanner::OperationPrecedence>(static_cast<uint8_t>(op) - 1), here, where-1);
}
ASTNode* right = readBinExp(static_cast<Scanner::OperationPrecedence>(static_cast<uint8_t>(op) - 1), where+1, there);
if(lhs && lhs->class_name() == "Literal" && right && right->class_name() == "Literal") // Really primitive const-rolling
{
auto literalLHS = static_cast<Literal*>(lhs);
auto literalRHS = static_cast<Literal*>(right);
FailureOr ret = BinaryExpression::BinaryOperation(literalLHS->const_resolve(*this,true),literalRHS->const_resolve(*this,true),boopitybeep);
//Don't need those old literals anymore!
delete literalLHS;
delete literalRHS;
if(ret.didError)
{
ParserError(t2,std::get<FailureOr::Failure>(ret.data).what.to_string());
lhs = new Literal(Value());
}
else
{
lhs = new Literal(std::get<Value>(ret.data));
}
}
else
lhs = new BinaryExpression(boopitybeep, lhs, right, t2->line);
continue;
}
else if (bOp_to_precedence.at(boopitybeep) > op)
{
goto READBOP_LEAVE_BOPSEARCH;
}
//we don't got a hit. :(
continue;
}
default:
continue;
}
}
READBOP_LEAVE_BOPSEARCH:
//std::cout << "Exiting search for " << Scanner::precedence_tostring(op) << " at token " << where << "...\n";
#ifdef LOUD_TOKENHEADER
std::cout << "readBinExp(" << Scanner::precedence_tostring(op) << ") setting tokenheader to " << std::to_string(where) << std::endl;
#endif
tokenheader = where; // FIXME: I don't even really know what exactly there is to fix here, just know that readBinExp does some funky bullshit with the tokenheader that may cause it to malpoint in anything readBinExp calls
if (lhs)
return lhs;
//ParserError(tokens[here], "readBinExp failed to read binary expression!");
//If we're here then it seems the operation(s) we're looking for doesn't exist
//So lets just return... whatever it is in the lower stacks
lhs = readBinExp(static_cast<Scanner::OperationPrecedence>(static_cast<uint8_t>(op) - 1), here, there);
return lhs;
}
ASTNode* Parser::readExp(int here, int there)
{
#ifdef LOUD_TOKENHEADER
std::cout << "Expression starts at " << std::to_string(here) << std::endl;
#endif
//Okay, god, we're really getting close to actually being able to *resolve* something.
Token* t = tokens[here];
Scanner::OperationPrecedence lowop = lowest_ops[t->syntactic_line];
if (lowop == Scanner::OperationPrecedence::NONE) // If we know for a fact that no binary operation takes place on this syntactic line
{
//++tokenheader;
#ifdef LOUD_TOKENHEADER
ASTNode* ans = readlvalue(here, there);
std::cout << "Expression leaves at " << std::to_string(tokenheader) << std::endl;
return ans;
#else
return readlvalue(here, there);
#endif
}
//we know (or at least kinda think) that there's a binop afoot.
#ifdef LOUD_TOKENHEADER
ASTNode* ans = readBinExp(lowop, here, there);
std::cout << "Expression leaves at " << std::to_string(tokenheader) << std::endl;
return ans;
#else
return readBinExp(lowop, here, there);
#endif
}
//Here-there-update; updates through ReadExp().
LocalAssignmentStatement* Parser::readLocalAssignment(int here, int there) // Value x = 3;
{
Token* t = tokens[here];
if (t->class_enum() != Token::cEnum::LocalTypeToken)
ParserError(t, "Unexpected Token where LocalTypeToken was expected!");
LocalType tuh;
switch (static_cast<LocalTypeToken*>(t)->t_type) // I feel like a lvl 10 Wizard when I write lines of C++ like this
{
case(LocalType::Value):
case(LocalType::Boolean):
case(LocalType::Number):
case(LocalType::Object):
case(LocalType::String):
tuh = static_cast<LocalTypeToken*>(t)->t_type;
break;
case(LocalType::Local):
ParserError(t, "'local' is a reserved word!");
return nullptr;
default:
ParserError(t, "Underimplemented LocalTypeToken detected!");
return nullptr;
}
Identifier* id = new Identifier(readName(here+1));
AssignmentStatement::aOps aesop = readaOp(here+2, false);
if (aesop == AssignmentStatement::aOps::NoOp)
{
if(tokens[here+2]->class_enum() != Token::cEnum::EndLineToken)
ParserError(t, "Unexpected token when reading LocalAssignment!");
//This implies something like "Value x;", which ought to be equivalent to "Value x = null;"
//So... lets make it equivalent!
//(We don't consume the semicolon; it's assumed by higher stacks that *they* will be the ones to consume it)
//(We know it's there, though ;) )
return new LocalAssignmentStatement(id, new Literal(Value()), AssignmentStatement::aOps::Assign, tuh, tokens[here+1]->line);
}
ASTNode* rvalue = readExp(here+3,there);
return new LocalAssignmentStatement(id, rvalue, aesop, tuh, tokens[here+1]->line);
}
//Consumes the open and close braces for you.
std::vector<Expression*> Parser::readBlock(BlockType bt, int here, int there) // Tokenheader state should point to the opening brace of this block.
{
//Blocks are composed of a starting brace, following by statements, and are ended by an end brace.
//Starting brace checks
Token* t = tokens[here];
consume_open_brace(here);
//Now the fun begins!
//In AST land, blocks are a list of expressions associated with a particular scope.
std::vector<Expression*> allStatements;
//I miss the pre-REPL era where statement parsing was unrolled into this thing.
for (int where = here+1; where <= there; where = tokenheader)
{
t = tokens[where];
switch(t->class_enum()) {
case(Token::cEnum::EndLineToken):
ParserError(t, "Unexpected semicolon in block!"); // Yes I'm *that* picky, piss off
continue;
case(Token::cEnum::PairSymbolToken): {
PairSymbolToken pt = *static_cast<PairSymbolToken*>(t);
if (pt.t_pOp == PairSymbolToken::pairOp::Brace && !pt.is_start)
{
//This pretty much has to be the end of the block; lets return our vector of shit.
tokenheader = where + 1;
goto BLOCK_RETURN_ASTS; // Can't break because we're in a switch in a for-loop :(
}
ParserError(t, "Unexpected PairSymbol while traversing block!");
break;
}
case(Token::cEnum::StringToken):
case(Token::cEnum::NumberToken):
ParserError(t, "Misplaced literal detected while traversing block!");
break;
default: LIKELY
break;
}
Expression* statement = readStatement(bt, where, there);
if(statement != nullptr)
allStatements.push_back(statement);
}
ParserError(t, "Unable to find ending brace of block!");
BLOCK_RETURN_ASTS:
if (allStatements.size() == 0)
{
ParserError(t, "Block created with no Expressions inside!");
}
#ifdef LOUD_TOKENHEADER
std::cout << "Exiting block with header pointed at " << std::to_string(tokenheader) << ".\n";
#endif
return allStatements;
}
Expression* Parser::readStatement(BlockType bt, int& where, int there) {
Token* t = tokens[where];
switch (t->class_enum())
{
case(Token::cEnum::EndLineToken): UNLIKELY // This is a null statement, then. Weird.
return nullptr;
case(Token::cEnum::KeywordToken): // Statements started by a keyword
{
KeywordToken kt = *static_cast<KeywordToken*>(t);
switch (kt.t_key)
{
case(KeywordToken::Key::For): // For loops!
{
++where; tokenheader = where;// Move the header past the for keyword
consume_paren(true); // (
int yonder = find_closing_pairlet(PairSymbolToken::pairOp::Paren, tokenheader);
size_t semicolon = find_first_semicolon(tokenheader, yonder-1); // Using "find" instead of "get" here,
//since we not sure whether this is a generic for-loop or a for-each.
if (!semicolon) // Can't be a generic for-loop, then. Attempt to read foreach
{
WordToken* keytoken, *valtoken; // This syntax is so borked
if (tokens[tokenheader]->class_enum() != Token::cEnum::WordToken) //keytoken
{
ParserError(tokens[tokenheader], "Unexpected token when Word expected while reading for-each!");
}
keytoken = static_cast<WordToken*>(tokens[tokenheader]);
++tokenheader;
if (tokens[tokenheader]->class_enum() != Token::cEnum::CommaToken) // The comma
{
ParserError(tokens[tokenheader], "Unexpected token when Comma expected while reading for-each!");
}
++tokenheader;
if (tokens[tokenheader]->class_enum() != Token::cEnum::WordToken) //valtoken
{
ParserError(tokens[tokenheader], "Unexpected token when Word expected while reading for-each!");
}
valtoken = static_cast<WordToken*>(tokens[tokenheader]);
++tokenheader;
if (tokens[tokenheader]->class_enum() != Token::cEnum::KeywordToken
|| static_cast<KeywordToken*>(tokens[tokenheader])->t_key != KeywordToken::Key::In) //"in" keyword
{
ParserError(tokens[tokenheader], "Unexpected token when 'in' keyword expected while reading for-each!");
}
++tokenheader;
ASTNode* table_node = readExp(tokenheader, yonder - 1);
//assert(yonder == tokenheader);
consume_paren(false); // )
return new ForEachBlock(keytoken->word, valtoken->word, table_node, readBlock(BlockType::For, tokenheader, there));
}
ASTNode* init;
if (find_aOp(tokenheader, static_cast<int>(semicolon)))
{
if (tokens[tokenheader]->class_enum() == Token::cEnum::LocalTypeToken)
init = readLocalAssignment(tokenheader, static_cast<int>(semicolon));
else
init = readAssignmentStatement(tokenheader, static_cast<int>(semicolon));
}
else
{
init = readExp(tokenheader, static_cast<int>(semicolon));
}
where = static_cast<int>(semicolon + 1);
semicolon = get_first_semicolon(where, yonder-1);
ASTNode* cond = readExp(where, static_cast<int>(semicolon)); // Assignments do not evaluate to anything in Jo�o so putting one in a conditional is silly
where = static_cast<int>(semicolon + 1);
ASTNode* inc;
if (find_aOp(where, yonder-1))
{
inc = readAssignmentStatement(where, yonder-1);
}
else
{
inc = readExp(where, yonder - 1);
}
consume_paren(false); // )
std::vector<Expression*> for_block = readBlock(BlockType::For,tokenheader,there); // { ...block... }
return new ForBlock(init, cond, inc, for_block);
}
case(KeywordToken::Key::If):
{
++where; tokenheader = where;
consume_paren(true); // (
int yonder = find_closing_pairlet(PairSymbolToken::pairOp::Paren, tokenheader);
ASTNode* cond = readExp(tokenheader, yonder-1);
consume_paren(false); // )
std::vector<Expression*> if_block = readBlock(BlockType::If,tokenheader,there);
IfBlock* ifStatement = new IfBlock(cond, if_block, tokens[where]->line);
while (tokens[tokenheader]->class_enum() == Token::cEnum::KeywordToken)
{
KeywordToken* ktptr = static_cast<KeywordToken*>(tokens[tokenheader]);
ASTNode* elif_cond = nullptr;
std::vector<Expression*> elif_block = {};
int block_start = tokenheader + 1;
bool was_else = true;
switch (ktptr->t_key)
{
default:
goto IF_BLOCK_LEAVE_ELIF_SEARCH;