-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApp.py
82 lines (56 loc) · 2.19 KB
/
App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import json
from PIL import Image
import numpy as np
import streamlit as st
from tensorflow.python.platform import _pywrap_tf2
from tensorflow.python import tf2 as _tf2
import tensorflow as tf
working_dir = os.path.dirname(os.path.abspath(__file__))
model_path = f"{working_dir}/Trained Model/wasteClassification.h5"
# Load the pre-trained model
model = tf.keras.models.load_model(model_path)
# loading the class names
classes = json.load(open(f"{working_dir}/classes.json"))
# Function to Load and Preprocess the Image using Pillow
# prompt: function to load and preprocess the images
def load_and_preprocess_image(image_path):
# Load the image from the file path.
image = tf.io.read_file(image_path)
# Decode the image from a JPEG string to a 3D tensor.
image = tf.image.decode_jpeg(image, channels=3)
# Resize the image to the desired size.
image = tf.image.resize(image, size=(imgSize, imgSize))
# Normalize the pixel values between 0 and 1.
image = image / 255.0
return image
# prompt: assign the two classes to "recycle" and "organic"
classes = {
0: "organic",
1: "recycle",
}
def predict_image_class(image_path):
# Preprocess the image.
image = load_and_preprocess_image(image_path)
# Add a batch dimension to the image.
image = tf.expand_dims(image, axis=0)
# Predict the class of the image.
predictions = model.predict(image)
# Get the class with the highest probability.
predicted_class = tf.argmax(predictions, axis=1)
# Return the class name.
return classes[predicted_class.numpy()[0]]
# Streamlit App
st.title('Waste Sorting Mechanism')
uploaded_image = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"])
if uploaded_image is not None:
image = Image.open(uploaded_image)
col1, col2 = st.columns(2)
with col1:
resized_img = image.resize((150, 150))
st.image(resized_img)
with col2:
if st.button('Classify'):
# Preprocess the uploaded image and predict the class
prediction = predict_image_class(model, uploaded_image, class_indices)
st.success(f'Prediction: {str(prediction)}')