-
Notifications
You must be signed in to change notification settings - Fork 0
/
runfix3.py
executable file
·106 lines (83 loc) · 2.65 KB
/
runfix3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python
import pickle
import cPickle
import numpy
import pystan
import sivel
f = open('fix1.pkl','rb')
(fit,_) = pickle.load(f)
gamma0 = numpy.median(fit['gamma'],axis=0)
gamma1 = numpy.median(fit['rho1'],axis=0)
# two color parameter model
pkl_file = open('gege_data.pkl', 'r')
data = pickle.load(pkl_file)
pkl_file.close()
sivel, sivel_err, _, _, _, _, _ = sivel.sivel(data)
use = numpy.isfinite(sivel)
# The ordering is 'Ca','Si','U','B','V','R','I'
EW_obs = data['obs'][:,0:2]
mag_obs = data['obs'][:,2:]
EW_cov = data['cov'][:,0:2,0:2]
mag_cov = data['cov'][:,2:,2:]
sivel=sivel[use]
sivel_err = sivel_err[use]
EW_obs=EW_obs[use]
mag_obs=mag_obs[use]
EW_cov= EW_cov[use]
mag_cov=mag_cov[use]
nsne, nmags = mag_obs.shape
# # renormalize the data
EW_mn = EW_obs.mean(axis=0)
EW_renorm = (EW_obs - EW_mn)
mag_mn = mag_obs.mean(axis=0)
mag_renorm = mag_obs-mag_mn
sivel_mn = sivel.mean()
sivel_renorm = sivel-sivel_mn
data = {'D': nsne, 'N_mags': 5, 'N_EWs': 2, 'mag_obs': mag_renorm, 'EW_obs': EW_renorm, 'EW_cov': EW_cov, 'mag_cov':mag_cov, \
'sivel_obs': sivel_renorm, 'sivel_err': sivel_err}
# pystan.misc.stan_rdump(data, 'data.R')
# wefew
Delta_simplex = numpy.zeros(nsne-1)
# Delta_simplex = numpy.zeros(nsne)+1./nsne
# k_simplex = numpy.zeros(nsne)
R_simplex = ((-1.)**numpy.arange(nsne)*.25 + .5)*2./nsne
R_simplex = R_simplex/R_simplex.sum()
numpy.random.seed(100)
ruv = []
for _ in range(8):
temp = numpy.random.uniform(-1,1,5)
ruv.append(temp/numpy.linalg.norm(temp))
init = [{'EW' : EW_renorm, \
'sivel': sivel_renorm,\
'c_raw' : numpy.zeros(5), \
'alpha_raw' : numpy.zeros(5), \
'beta_raw' : numpy.zeros(5), \
'eta_raw' : numpy.zeros(5), \
'ev_sig': 0.1, \
'ev': ruv[_],\
# 'L_sigma_raw': numpy.zeros(5)+0.03*100, \
'gamma01': gamma0[0],\
'gamma02': gamma0[1],\
'gamma03': gamma0[2],\
'gamma04': gamma0[3],\
'gamma05': gamma0[4],\
'mag_int_raw': numpy.mean(mag_renorm,axis=1), \
# 'L_Omega': numpy.identity(5), \
'Delta_unit':R_simplex, \
'Delta_scale': 15./4, \
'k_unit': R_simplex, \
'R_unit': R_simplex, \
'rho11': gamma1[0],\
'rho12': gamma1[1],\
'rho13': gamma1[2],\
'rho14': gamma1[3],\
'rho15': gamma1[4]\
} \
for _ in range(8)]
sm = pystan.StanModel(file='fix3.stan')
control = {'stepsize':1}
fit = sm.sampling(data=data, iter=5000, chains=8,control=control,init=init, thin=1)
output = open('fix3.pkl','wb')
pickle.dump((fit.extract(),fit.get_sampler_params()), output, protocol=2)
output.close()
print fit