-
Notifications
You must be signed in to change notification settings - Fork 0
/
model5.py
executable file
·79 lines (67 loc) · 2.18 KB
/
model5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python
import pickle
import numpy
import pystan
# two color parameter model
pkl_file = open('gege_data.pkl', 'r')
data = pickle.load(pkl_file)
pkl_file.close()
# The ordering is 'Ca','Si','U','B','V','R','I'
EW_obs = data['obs'][:,0:2]
mag_obs = data['obs'][:,2:]
EW_cov = data['cov'][:,0:2,0:2]
mag_cov = data['cov'][:,2:,2:]
nsne, nmags = mag_obs.shape
# # renormalize the data
EW_mn = EW_obs.mean(axis=0)
EW_renorm = (EW_obs - EW_mn)
mag_mn = mag_obs.mean(axis=0)
mag_renorm = mag_obs-mag_mn
data = {'D': nsne, 'N_mags': 5, 'N_EWs': 2, 'mag_obs': mag_renorm, 'EW_obs': EW_renorm, 'EW_cov': EW_cov, 'mag_cov':mag_cov}
Delta_simplex = numpy.zeros(nsne-1)
# Delta_simplex = numpy.zeros(nsne)+1./nsne
# k_simplex = numpy.zeros(nsne)
R_simplex = ((-1.)**numpy.arange(nsne)*.25 + .5)*2./nsne
init = [{'EW' : EW_renorm, \
'c_raw' : numpy.zeros(5), \
'alpha_raw' : numpy.zeros(5), \
'beta_raw' : numpy.zeros(5), \
'L_sigma_raw': numpy.zeros(5)+0.03*100, \
# roughly the peak of one-color
# 'gamma01': 5.2*1.,\
# 'gamma03': 3.4*1.,\
# 'gamma03': 3.4*1.,\
# 'gamma04': 3.0*1.,\
# 'gamma05': 2.4*1.,\
'gamma01': 6./5,\
'gamma02': 4./5,\
'gamma03': 3./5,\
'gamma04': 2./5,\
'gamma05': 1./5,\
'mag_int_raw': mag_renorm, \
'L_Omega': numpy.identity(5), \
'Delta_unit':R_simplex, \
'Delta_scale': 2.5, \
'k_unit': R_simplex, \
# 'k_scale': 20, \
'R_unit': R_simplex, \
# 'R_scale': 20, \
# 'rho11': 4.4/100.,\
# 'rho13': 2.6/100.,\
# 'rho14': 2.2/100.,\
# 'rho15': 1.8/100.,\
'rho11': 17./5,\
'rho12': 0.*3./5,\
'rho13': 0./5,\
'rho14': 0.*3./5,\
'rho15': 0.*3./5,\
# 'rho1':numpy.zeros(5)\
} \
for _ in range(4)]
sm = pystan.StanModel(file='gerard5.stan')
control = {'stepsize':1}
fit = sm.sampling(data=data, iter=2000, chains=4,control=control,init=init, thin=1)
output = open('temp5.pkl','wb')
pickle.dump((fit.extract(),fit.get_sampler_params()), output, protocol=2)
output.close()
print fit