-
Notifications
You must be signed in to change notification settings - Fork 0
/
model28.py
executable file
·183 lines (142 loc) · 5.44 KB
/
model28.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python
import pickle
import cPickle
import numpy
import pystan
import sivel
import matplotlib.pyplot as plt
import corner
# provide stan 3 eigenvectors with respect to try to align delta vector
f = open('temp11.pkl','rb')
(fit,_) = pickle.load(f)
gamma0 = numpy.median(fit['gamma'],axis=0)
gamma1 = numpy.median(fit['rho1'],axis=0)
gamma0_cov = numpy.cov(fit['gamma'],rowvar=False)
gamma1_cov = numpy.cov(fit['rho1'],rowvar=False)
_, gamma0_ev = numpy.linalg.eigh(gamma0_cov)
# print gamma0_ev[:,0]
gamma0_eval = numpy.array(fit['gamma'])
for i in xrange(gamma0_eval.shape[0]):
for j in xrange(5):
gamma0_eval[i,j]=numpy.dot(fit['gamma'][i,:], gamma0_ev[:,j])
gamma0_min = numpy.min(gamma0_eval,axis=0)-0.05
gamma0_max = numpy.max(gamma0_eval,axis=0)+0.05
# for i in xrange(5):
# plt.hist(gamma0_eval[:,i])
# plt.show()
_, gamma1_ev = numpy.linalg.eigh(gamma1_cov)
gamma1_eval = numpy.array(fit['rho1'])
for i in xrange(gamma1_eval.shape[0]):
for j in xrange(5):
gamma1_eval[i,j]=numpy.dot(fit['rho1'][i,:], gamma1_ev[:,j])
gamma1_min = numpy.min(gamma1_eval,axis=0)-0.05
gamma1_max = numpy.max(gamma1_eval,axis=0)+0.05
gamma0median = numpy.median(gamma0_eval,axis=0)
gamma1median = numpy.median(gamma1_eval,axis=0)
fit=None
m = numpy.zeros((2,5))
m[0]=gamma0
m[1]=gamma1
m=m.T
q, r = numpy.linalg.qr(m,mode='complete')
q=q.T
# two color parameter model
pkl_file = open('gege_data.pkl', 'r')
data = pickle.load(pkl_file)
pkl_file.close()
sivel,sivel_err,x1,x1_err,zcmb,zerr = sivel.sivel(data)
# dic_phreno=cPickle.load(open("phrenology_2016_12_01_CABALLOv1.pkl"))
# dic_meta=cPickle.load(open("META.pkl"))
# sivel=[]
# sivel_err=[]
# for sn in data['snlist']:
# sn = 'PTF12iiq'
# if sn in dic_meta.keys() and sn in dic_phreno.keys():
# meta = dic_meta[sn]
# vSiII_6355_lbd=0.
# vSiII_6355_lbd_err=0.
# counter = 0
# for sp in dic_phreno[sn]["spectra"]:
# if sp in meta['spectra'].keys() and numpy.abs(meta['spectra'][sp]['salt2.phase']) < 2.5 and numpy.isfinite(dic_phreno[sn]["spectra"][sp]["phrenology.vSiII_6355_lbd"]):
# vSiII_6355_lbd += dic_phreno[sn]["spectra"][sp]["phrenology.vSiII_6355_lbd"]/dic_phreno[sn]['spectra'][sp]["phrenology.vSiII_6355_lbd.err"]**2
# vSiII_6355_lbd_err += 1/dic_phreno[sn]['spectra'][sp]["phrenology.vSiII_6355_lbd.err"]**2
# print dic_phreno[sn]["spectra"][sp]["phrenology.vSiII_6355_lbd"]
# counter +=1
# if counter !=0:
# sivel.append(vSiII_6355_lbd / vSiII_6355_lbd_err)
# sivel_err.append(1./numpy.sqrt(vSiII_6355_lbd_err))
# else:
# sivel.append(float('nan'))
# sivel_err.append(float('nan'))
# else:
# sivel.append(float('nan'))
# sivel_err.append(float('nan'))
# sivel = numpy.array(sivel)
# sivel_err = numpy.array(sivel_err)
use = numpy.isfinite(sivel)
# The ordering is 'Ca','Si','U','B','V','R','I'
EW_obs = data['obs'][:,0:2]
mag_obs = data['obs'][:,2:]
EW_cov = data['cov'][:,0:2,0:2]
mag_cov = data['cov'][:,2:,2:]
sivel=sivel[use]
sivel_err = sivel_err[use]
EW_obs=EW_obs[use]
mag_obs=mag_obs[use]
EW_cov= EW_cov[use]
mag_cov=mag_cov[use]
snname = numpy.array(data['snlist'])[use]
nsne, nmags = mag_obs.shape
# # renormalize the data
EW_mn = EW_obs.mean(axis=0)
EW_renorm = (EW_obs - EW_mn)
mag_mn = mag_obs.mean(axis=0)
mag_renorm = mag_obs-mag_mn
sivel_mn = sivel.mean()
sivel_renorm = sivel-sivel_mn
data = {'D': nsne, 'N_mags': 5, 'N_EWs': 2, 'mag_obs': mag_renorm, 'EW_obs': EW_renorm, 'EW_cov': EW_cov, 'mag_cov':mag_cov, \
'sivel_obs': sivel_renorm, 'sivel_err': sivel_err, 'e1': q[2], 'e2':q[3], 'e3':q[4], 'gamma0in':gamma0,'gamma1in':gamma1,'gamma0in_cov':gamma0_cov,'gamma1in_cov':gamma1_cov,\
'gamma0_ev':gamma0_ev, 'gamma1_ev':gamma1_ev, 'gamma0_min':gamma0_min, 'gamma0_max': gamma0_max, 'gamma1_min':gamma1_min, 'gamma1_max': gamma1_max }
Delta_simplex = numpy.zeros(nsne-1)
# Delta_simplex = numpy.zeros(nsne)+1./nsne
# k_simplex = numpy.zeros(nsne)
R_simplex = ((-1.)**numpy.arange(nsne)*.25 + .5)*2./nsne
R_simplex = R_simplex/R_simplex.sum()
init = [{'EW' : EW_renorm, \
'sivel': sivel_renorm,\
'c_raw' : numpy.zeros(5), \
'alpha_raw' : numpy.zeros(5), \
'beta_raw' : numpy.zeros(5), \
'eta_raw' : numpy.zeros(5), \
'L_sigma_raw': numpy.zeros(5)+0.03*100, \
'gamma01': gamma0median[0],\
'gamma02': gamma0median[1],\
'gamma03': gamma0median[2],\
'gamma04': gamma0median[3],\
'gamma05': gamma0median[4],\
'gamma11': gamma1median[0],\
'gamma12': gamma1median[1],\
'gamma13': gamma1median[2],\
'gamma14': gamma1median[3],\
'gamma15': gamma1median[4],\
'mag_int_raw': mag_renorm, \
'L_Omega': numpy.identity(5), \
'Delta_unit':R_simplex, \
'Delta_scale': 15./4, \
'k_unit': R_simplex, \
'k1_unit': R_simplex, \
'R_unit': numpy.zeros(nsne),\
# 'rho11': 0./5,\
# 'rho12': 0./5,\
# 'rho13': 0./5,\
'rho1': numpy.zeros(5),\
} \
for _ in range(8)]
sm = pystan.StanModel(file='gerard28.stan')
# control = {'stepsize':0.1, 'max_treedepth':20}
control = {'stepsize':1, 'max_treedepth':10}
fit = sm.sampling(data=data, iter=5000, chains=8,control=control,init=init, thin=1)
output = open('temp28.pkl','wb')
pickle.dump((fit.extract(),fit.get_sampler_params()), output, protocol=2)
output.close()
print fit