-
Notifications
You must be signed in to change notification settings - Fork 0
/
model24.py
executable file
·144 lines (115 loc) · 4.05 KB
/
model24.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python
import pickle
import cPickle
import numpy
import pystan
import sivel
# provide stan 3 eigenvectors with respect to try to align delta vector
f = open('temp11.pkl','rb')
(fit,_) = pickle.load(f)
gamma0 = numpy.median(fit['gamma'],axis=0)
gamma1 = numpy.median(fit['rho1'],axis=0)
fit=None
m = numpy.zeros((2,5))
m[0]=gamma0
m[1]=gamma1
m=m.T
q, r = numpy.linalg.qr(m,mode='complete')
q=q.T
# two color parameter model
pkl_file = open('gege_data.pkl', 'r')
data = pickle.load(pkl_file)
pkl_file.close()
sivel,sivel_err,x1,x1_err,zcmb,zerr = sivel.sivel(data)
# dic_phreno=cPickle.load(open("phrenology_2016_12_01_CABALLOv1.pkl"))
# dic_meta=cPickle.load(open("META.pkl"))
# sivel=[]
# sivel_err=[]
# for sn in data['snlist']:
# sn = 'PTF12iiq'
# if sn in dic_meta.keys() and sn in dic_phreno.keys():
# meta = dic_meta[sn]
# vSiII_6355_lbd=0.
# vSiII_6355_lbd_err=0.
# counter = 0
# for sp in dic_phreno[sn]["spectra"]:
# if sp in meta['spectra'].keys() and numpy.abs(meta['spectra'][sp]['salt2.phase']) < 2.5 and numpy.isfinite(dic_phreno[sn]["spectra"][sp]["phrenology.vSiII_6355_lbd"]):
# vSiII_6355_lbd += dic_phreno[sn]["spectra"][sp]["phrenology.vSiII_6355_lbd"]/dic_phreno[sn]['spectra'][sp]["phrenology.vSiII_6355_lbd.err"]**2
# vSiII_6355_lbd_err += 1/dic_phreno[sn]['spectra'][sp]["phrenology.vSiII_6355_lbd.err"]**2
# print dic_phreno[sn]["spectra"][sp]["phrenology.vSiII_6355_lbd"]
# counter +=1
# if counter !=0:
# sivel.append(vSiII_6355_lbd / vSiII_6355_lbd_err)
# sivel_err.append(1./numpy.sqrt(vSiII_6355_lbd_err))
# else:
# sivel.append(float('nan'))
# sivel_err.append(float('nan'))
# else:
# sivel.append(float('nan'))
# sivel_err.append(float('nan'))
# sivel = numpy.array(sivel)
# sivel_err = numpy.array(sivel_err)
use = numpy.isfinite(sivel)
# The ordering is 'Ca','Si','U','B','V','R','I'
EW_obs = data['obs'][:,0:2]
mag_obs = data['obs'][:,2:]
EW_cov = data['cov'][:,0:2,0:2]
mag_cov = data['cov'][:,2:,2:]
sivel=sivel[use]
sivel_err = sivel_err[use]
EW_obs=EW_obs[use]
mag_obs=mag_obs[use]
EW_cov= EW_cov[use]
mag_cov=mag_cov[use]
snname = numpy.array(data['snlist'])[use]
nsne, nmags = mag_obs.shape
# # renormalize the data
EW_mn = EW_obs.mean(axis=0)
EW_renorm = (EW_obs - EW_mn)
mag_mn = mag_obs.mean(axis=0)
mag_renorm = mag_obs-mag_mn
sivel_mn = sivel.mean()
sivel_renorm = sivel-sivel_mn
data = {'D': nsne, 'N_mags': 5, 'N_EWs': 2, 'mag_obs': mag_renorm, 'EW_obs': EW_renorm, 'EW_cov': EW_cov, 'mag_cov':mag_cov, \
'sivel_obs': sivel_renorm, 'sivel_err': sivel_err, 'e1': q[2], 'e2':q[3], 'e3':q[4]}
Delta_simplex = numpy.zeros(nsne-1)
# Delta_simplex = numpy.zeros(nsne)+1./nsne
# k_simplex = numpy.zeros(nsne)
R_simplex = ((-1.)**numpy.arange(nsne)*.25 + .5)*2./nsne
R_simplex = R_simplex/R_simplex.sum()
init = [{'EW' : EW_renorm, \
'sivel': sivel_renorm,\
'c_raw' : numpy.zeros(5), \
'alpha_raw' : numpy.zeros(5), \
'beta_raw' : numpy.zeros(5), \
'eta_raw' : numpy.zeros(5), \
'L_sigma_raw': numpy.zeros(5)+0.03*100, \
'gamma01': 61./5,\
'gamma02': 50./5,\
'gamma03': 40./5,\
'gamma04': 30./5,\
'gamma05': 20./5,\
'gamma11': -12./5,\
'gamma12': -14./5,\
'gamma13': -16./5,\
'gamma14': -14./5,\
'gamma15': -14/5,\
'mag_int_raw': mag_renorm, \
'L_Omega': numpy.identity(5), \
'Delta_unit':R_simplex, \
'Delta_scale': 15./4, \
'k_unit': R_simplex, \
'k1_unit': R_simplex, \
'R_unit': R_simplex, \
'rho11': 0./5,\
'rho12': 0/5,\
'rho13': 1./5,\
} \
for _ in range(8)]
sm = pystan.StanModel(file='gerard24.stan')
control = {'stepsize':1}
fit = sm.sampling(data=data, iter=5000, chains=8,control=control,init=init, thin=1)
output = open('temp24.pkl','wb')
pickle.dump((fit.extract(),fit.get_sampler_params()), output, protocol=2)
output.close()
print fit