-
Notifications
You must be signed in to change notification settings - Fork 0
/
model18.py
executable file
·86 lines (66 loc) · 2.12 KB
/
model18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#!/usr/bin/env python
import pickle
import cPickle
import numpy
import pystan
import sivel
# two color parameter model
pkl_file = open('fitz.pkl', 'r')
a=pickle.load(pkl_file)
pkl_file.close()
pkl_file = open('gege_data.pkl', 'r')
data = pickle.load(pkl_file)
pkl_file.close()
sivel, sivel_err, _, _, _, _ = sivel.sivel(data)
use = numpy.isfinite(sivel)
# The ordering is 'Ca','Si','U','B','V','R','I'
EW_obs = data['obs'][:,0:2]
mag_obs = data['obs'][:,2:]
EW_cov = data['cov'][:,0:2,0:2]
mag_cov = data['cov'][:,2:,2:]
sivel=sivel[use]
sivel_err = sivel_err[use]
EW_obs=EW_obs[use]
mag_obs=mag_obs[use]
EW_cov= EW_cov[use]
mag_cov=mag_cov[use]
nsne, nmags = mag_obs.shape
# # renormalize the data
EW_mn = EW_obs.mean(axis=0)
EW_renorm = (EW_obs - EW_mn)
mag_mn = mag_obs.mean()
mag_renorm = mag_obs-mag_mn
sivel_mn = sivel.mean()
sivel_renorm = sivel-sivel_mn
data = {'D': nsne, 'N_mags': 5, 'N_EWs': 2, 'mag_obs': mag_renorm, 'EW_obs': EW_renorm, 'EW_cov': EW_cov, 'mag_cov':mag_cov, \
'sivel_obs': sivel_renorm, 'sivel_err': sivel_err, 'a':a}
# pystan.misc.stan_rdump(data, 'data.R')
# wefew
Delta_simplex = numpy.zeros(nsne-1)
# Delta_simplex = numpy.zeros(nsne)+1./nsne
# k_simplex = numpy.zeros(nsne)
R_simplex = ((-1.)**numpy.arange(nsne)*.25 + .5)*2./nsne
R_simplex = R_simplex/R_simplex.sum()
init = [{'EW' : EW_renorm, \
'sivel': sivel_renorm,\
'c_zero' : 0, \
# 'c_raw' : numpy.zeros(5), \
'alpha_raw' : numpy.zeros(5), \
'beta_raw' : numpy.zeros(5), \
'eta_raw' : numpy.zeros(5), \
'L_sigma_raw': numpy.zeros(5)+0.03*100, \
'mag_int_raw': mag_renorm, \
'L_Omega': numpy.identity(5), \
'Delta_unit':R_simplex, \
'Delta_scale': 15./4, \
'AV': numpy.zeros(nsne)+0.02, \
'RVinv': 1./2.5, \
} \
for _ in range(8)]
sm = pystan.StanModel(file='gerard18.stan')
control = {'stepsize':1}
fit = sm.sampling(data=data, iter=4000, chains=8,control=control,init=init, thin=1)
output = open('temp18.pkl','wb')
pickle.dump((fit.extract(),fit.get_sampler_params()), output, protocol=2)
output.close()
# print fit