-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgerard25.stan
236 lines (199 loc) · 6.59 KB
/
gerard25.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#./gerard15 sample num_warmup=5000 num_samples=5000 data file=data.R init=init15.R output file=output15.csv refresh=1000
data {
int D; // Number of supernovae
int N_mags;
int N_EWs;
vector[N_mags] mag_obs[D];
vector[N_EWs] EW_obs[D];
matrix[N_mags, N_mags] mag_cov[D];
matrix[N_EWs, N_EWs] EW_cov[D];
vector[D] sivel_obs;
vector[D] sivel_err;
unit_vector[5] e1;
unit_vector[5] e2;
unit_vector[5] e3;
vector[5] gamma0in;
matrix[5,5] gamma0in_cov;
vector[5] gamma1in;
matrix[5,5] gamma1in_cov;
vector[5] gamma0_min;
vector[5] gamma0_max;
matrix[5,5] gamma0_ev;
vector[5] gamma1_min;
vector[5] gamma1_max;
matrix[5,5] gamma1_ev;
}
transformed data{
cholesky_factor_cov[5] L_gamma0;
cholesky_factor_cov[5] L_gamma1;
#make the prior 2x looser than the previous determination
L_gamma0 = cholesky_decompose(4*gamma0in_cov);
L_gamma1 = cholesky_decompose(4*gamma1in_cov);
}
parameters {
vector[5] c_raw;
vector[5] alpha_raw;
vector[5] beta_raw;
vector<lower=0.0>[N_mags] L_sigma_raw;
vector[5] eta_raw;
real<lower=gamma0_min[1], upper=gamma0_max[1]> gamma01;
real<lower=gamma0_min[2], upper=gamma0_max[2]> gamma02;
real<lower=gamma0_min[3], upper=gamma0_max[3]> gamma03;
real<lower=gamma0_min[4], upper=gamma0_max[4]> gamma04;
real<lower=gamma0_min[5], upper=gamma0_max[5]> gamma05;
real<lower=gamma1_min[1], upper=gamma1_max[1]> gamma11;
real<lower=gamma1_min[2], upper=gamma1_max[2]> gamma12;
real<lower=gamma1_min[3], upper=gamma1_max[3]> gamma13;
real<lower=gamma1_min[4], upper=gamma1_max[4]> gamma14;
real<lower=gamma1_min[5], upper=gamma1_max[5]> gamma15;
# real rho11;
# real rho12;
# real rho13;
# real rho14;
# real rho15;
real <lower=0> Delta_scale;
cholesky_factor_corr[N_mags] L_Omega;
vector[2] EW[D];
vector[D] sivel;
vector[N_mags] mag_int_raw[D];
simplex[D] Delta_unit;
simplex[D] k_unit;
simplex[D] k1_unit;
# simplex[D] R_unit;
vector<lower=-.1,upper=.1>[D] R_unit;
vector[5] rho1;
}
transformed parameters {
vector[5] c;
vector[5] alpha;
vector[5] beta;
vector[5] eta;
vector[N_mags] L_sigma;
vector[D] Delta;
vector[D] k;
vector[D] k1;
vector[D] R;
vector[5] gamma;
vector[5] gamma1;
# vector[5] rho1;
vector[N_mags] mag_int[D];
c = c_raw/1e2;
alpha = alpha_raw/5e2;
beta = beta_raw/2e2;
eta = eta_raw/6e2;
L_sigma = L_sigma_raw/100.;
Delta = 4.*Delta_scale*(Delta_unit-1./D);
k=(k_unit-1./D);
k1=(k1_unit-1./D);
# R=(R_unit-1./D);
R = R_unit - mean(R_unit);
for (d in 1:5){
gamma[d] = gamma01 * gamma0_ev[d,1] + gamma02 * gamma0_ev[d,2] + gamma03 * gamma0_ev[d,3] + gamma04 * gamma0_ev[d,4] + gamma05 * gamma0_ev[d,5];
gamma1[d]= gamma11 * gamma1_ev[d,1] + gamma12 * gamma1_ev[d,2] + gamma13 * gamma1_ev[d,3] + gamma14 * gamma1_ev[d,4] + gamma15 * gamma1_ev[d,5];
}
# gamma[1] = gamma01;
# gamma[2] = gamma02;
# gamma[3] = gamma03;
# gamma[4] = gamma04;
# gamma[5] = gamma05;
# gamma = gamma*5;
# gamma1[1] = gamma11;
# gamma1[2] = gamma12;
# gamma1[3] = gamma13;
# gamma1[4] = gamma14;
# gamma1[5] = gamma15;
# gamma1 = gamma1*5;
# {
# matrix[5,5] Q;
# matrix[5,2] A;
# matrix[5,3] A2;
# matrix[5,4] A3;
# vector[5] ev1;
# vector[5] ev2;
# vector[5] ev3;
# real dp;
# for (d in 1:5){
# A[d,1] = gamma[d];
# A[d,2] = gamma1[d];
# }
# Q=qr_Q(A);
# Q=Q';
# ev3 = e1;
# for (d in 1:2){
# dp = dot_product(Q[d],e1);
# for(d2 in 1:5){
# ev3[d2] = ev3[d2] - dp *Q[d,d2];
# }
# }
# ev3 = ev3/sqrt(sum(ev3 .* ev3));
# for (d in 1:5){
# A2[d,1] = gamma[d];
# A2[d,2] = gamma1[d];
# A2[d,3] = ev3[d];
# }
# Q=qr_Q(A2);
# Q=Q';
# ev1=e2;
# for (d in 1:3){
# dp = dot_product(Q[d],e2);
# for(d2 in 1:5){
# ev1[d2] = ev1[d2] - dp *Q[d,d2];
# }
# }
# ev1 = ev1/sqrt(sum(ev1 .* ev1));
# for (d in 1:5){
# A3[d,1] = gamma[d];
# A3[d,2] = gamma1[d];
# A3[d,3] = ev3[d];
# A3[d,4] = ev1[d];
# }
# Q=qr_Q(A3);
# Q=Q';
# for(d2 in 1:5){
# ev2[d2] = Q[5,d2];
# }
# dp = dot_product(ev2, e3);
# ev2 = dp/fabs(dp) * ev2;
# # print(dot_product(gamma,ev1)," ",dot_product(gamma1,ev1));
# # print(dot_product(gamma,ev2)," ",dot_product(gamma1,ev2));
# # print(dot_product(gamma,ev3)," ",dot_product(gamma1,ev3));
# # print(dot_product(ev1,ev2)," ",dot_product(ev1,ev3)," ",dot_product(ev2,ev3));
# rho1 = rho11*ev1 + rho12*ev2 + rho13*ev3;
# }
# rho1 = -rho1*2.5;
# non-centered parameterization
{
matrix[5,5] L_Sigma;
L_Sigma = diag_pre_multiply(L_sigma, L_Omega);
for (d in 1:D) {
mag_int[d] = Delta[d] + c+ alpha*EW[d,1] + beta*EW[d,2] + rho1*R[d] + eta*sivel[d] + L_Sigma * mag_int_raw[d];
}
}
}
model {
target += cauchy_lpdf(L_sigma | 0.1,0.1);
target += lkj_corr_cholesky_lpdf(L_Omega | 4.);
for (d in 1:D) {
target += normal_lpdf(mag_int_raw[d]| 0, 1);
target += multi_normal_lpdf(mag_obs[d] | mag_int[d]+gamma*k[d]+gamma1*k1[d], mag_cov[d]);
target += multi_normal_lpdf(EW_obs[d] | EW[d], EW_cov[d]);
}
target += (normal_lpdf(sivel_obs | sivel,sivel_err));
# target += uniform_lpdf(rho11 | -10, 0);
# target += uniform_lpdf(rho1[5] | 0, 100);
sum(R .* R) ~ cauchy(5e-3,1.);
# gamma ~ multi_normal_cholesky(gamma0in, L_gamma0);
# gamma1 ~ multi_normal_cholesky(gamma1in, L_gamma1);
# for (d in 1:5) {
# # print (gamma, " ",gamma1);
# # # print ( gamma0_ev[1,d] ," ", gamma0_ev[2,d] ," ", gamma0_ev[3,d] ," ", gamma0_ev[4,d] ," ", gamma0_ev[5,d]);
# # print (gamma[1]*gamma0_ev[1,d] + gamma[2]*gamma0_ev[2,d] + gamma[3]*gamma0_ev[3,d]+ gamma[4]*gamma0_ev[4,d]+ gamma[5]*gamma0_ev[5,d]);
# # print (gamma0_min[d]," ", gamma0_max[d]);
# # print (gamma1[1]*gamma1_ev[1,d] + gamma[2]*gamma1_ev[2,d] + gamma[3]*gamma1_ev[3,d]+ gamma[4]*gamma1_ev[4,d]+ gamma[5]*gamma1_ev[5,d]);
# # print (gamma1_min[d]," ", gamma1_max[d]);
# gamma[1]*gamma0_ev[1,d] + gamma[2]*gamma0_ev[2,d] + gamma[3]*gamma0_ev[3,d]+ gamma[4]*gamma0_ev[4,d]+ gamma[5]*gamma0_ev[5,d]
# ~ uniform(gamma0_min[d], gamma0_max[d]);
# gamma1[1]*gamma1_ev[1,d] + gamma1[2]*gamma1_ev[2,d] + gamma1[3]*gamma1_ev[3,d]+ gamma1[4]*gamma1_ev[4,d]+ gamma1[5]*gamma1_ev[5,d]
# ~ uniform(gamma1_min[d], gamma1_max[d]);
# }
}