-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathDVS128_DataModule.py
1210 lines (987 loc) · 62.7 KB
/
DVS128_DataModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 27 17:26:41 2021
@author: asabater
"""
from torch.utils.data import Dataset, DataLoader
from pytorch_lightning import LightningDataModule
import torch
# from torch.nn.utils.rnn import pad_sequence
import os
import pickle
import numpy as np
import json
from skimage.util import view_as_blocks
import copy
from scipy import ndimage
class_mapping = {0: 'background', 1: 'hand_clapping', 2: 'right_hand_wave',
3: 'left_hand_wave', 4: 'right_arm_clockwise',
5: 'right_arm_counter_clockwise', 6: 'left_arm_clockwise',
7: 'left_arm_counter_clockwise', 8: 'arm_roll',
9: 'air_drums', 10: 'air_guitar', 11: 'other_gestures'}
# - TODO: split event sequences by chunks
# - TODO: zero-pad chunks
# - TODO: zero-pad batches
# TODO: ensure events sorted by time
# - TODO: remove last chunk (not complete)
# - TODO: create chunks by filtering the array, not iterating over events. -> move array to torch tensor
# TODO: BatchSampler -> generates indices per batch. Create custom para samplear por class y duplicados (anchoring)
# TODO: change all the np.random to torch.random
# class DVS128Dataset(Dataset):
# def __init__(self, samples_folder, chunk_len_ms, height=128, width=128,
# skip_last_event=False, classes_to_exclude=[], transform=None):
# self.samples_folder = samples_folder
# self.chunk_len_ms = chunk_len_ms
# self.chunk_len_us = chunk_len_ms*1000
# self.height = height
# self.width = width
# self.skip_last_event = skip_last_event
# self.transform = transform
# self.samples = os.listdir(samples_folder)
# for l in classes_to_exclude:
# self.samples = [ s for s in self.samples if '_label{:02}'.format(l) not in s ]
# self.labels = np.array([ int(t[5:7]) for s in self.samples for t in s.split('_') if 'label' in t ]).astype('int8')
# unique_labels = { l:i for i,l in enumerate(set(self.labels)) }
# self.labels = [ unique_labels[l] for l in self.labels ]
# self.num_classes = len(unique_labels)
# def __len__(self):
# return len(self.samples)
# def get_label_dict(self):
# label_dict = { c:[] for c in set(self.labels) }
# for i,l in enumerate(self.labels): label_dict[l].append(i)
# for k in label_dict: label_dict[k] = torch.IntTensor(label_dict[k])
# return label_dict
# # event_chunk -> [N, 4], [x, y, t, p] x N -> (p0,p1) x N, (x,y) x N
# def aggregate_events_array_per_pixel(self, event_chunk):
# # [N, 2] -> (pixel_num, p) x N
# polarity = torch.nn.functional.one_hot(event_chunk[:,3].long(), num_classes=2)
# # (N)
# pixels = event_chunk[:,0] + event_chunk[:,1]*self.width
# # Aggreagate by pixels and count polarities
# unique_pixels, pixel_inds = pixels.unique(dim=0, return_inverse=True)
# pixel_inds = pixel_inds.view(pixels.size(0), 1).expand(-1, polarity.size(1))
# unique_pixels = unique_pixels.view(unique_pixels.size(0), 1).expand(-1, polarity.size(1))
# agg_polarity_pixel_count = torch.zeros_like(unique_pixels, dtype=torch.long).scatter_add_(0, pixel_inds, polarity)
# # Transform unique pixels to x/y
# unique_pixels = torch.column_stack([torch.remainder(unique_pixels[:,0], self.width), unique_pixels[:,0] // self.width])
# return agg_polarity_pixel_count, unique_pixels
# # Split events into chunks
# def get_total_chunks_by_iteration(self, total_events):
# total_chunks = []; init_t = total_events[0][2]; curr_chunk = []
# for e in total_events:
# if init_t + self.chunk_len_us < e[2]:
# total_chunks.append(torch.stack(curr_chunk, axis=0))
# curr_chunk, init_t = [], e[2]
# curr_chunk.append(e)
# if not self.skip_last_event:
# total_chunks.append(torch.stack(curr_chunk, axis=0))
# curr_chunk = []
# return total_chunks
# def get_total_chunks_by_filtering(self, total_events):
# total_chunks = []
# while total_events.shape[0] > 0:
# init_t = total_events[0][2]
# chunk_inds = torch.where(total_events[:,2] <= init_t + self.chunk_len_us)
# total_chunks.append(total_events[chunk_inds])
# total_events = total_events[chunk_inds[0].max()+1:]
# return total_chunks
# def extract_chunk_data(self, total_chunks):
# chunk_data = [ self.aggregate_events_array_per_pixel(curr_chunk) for curr_chunk in total_chunks ]
# return [ cd[0] for cd in chunk_data ], [ cd[1] for cd in chunk_data ]
# def __getitem__(self, idx):
# filename = self.samples[idx]
# label = self.labels[idx]
# total_events = pickle.load(open(os.path.join(self.samples_folder + filename), 'rb')) # (events, label)
# # total_events = total_events[0] # (x,y,t,p)
# total_events = torch.Tensor(total_events[0].astype('int32')) # (x,y,t,p)
# if self.transform:
# # sample = self.transform(sample)
# raise ValueError('Transformations not implemented')
# else:
# # total_chunks = self.get_total_chunks_by_iteration(total_events) # 15.18s
# total_chunks = self.get_total_chunks_by_filtering(total_events) # 404.74ms
# total_polarity, total_pixels = self.extract_chunk_data(total_chunks) # 4.93 ms
# return total_polarity, total_pixels, label
class DVS128Dataset_from_frames(Dataset):
def __init__(self, samples_folder, chunk_len_ms,
validation,
# max_sample_len_ms = -1,
augmentation_params,
preproc_polarity, patch_size, min_activations_per_patch,
bins,
min_patches_per_chunk, min_events_per_chunk, num_extra_chunks,
dataset_name, height, width,
classes_to_exclude=[]):
print(' * Creating DVS128Dataset_from_frames. Validation:', validation)
self.samples_folder = samples_folder
self.validation = validation
self.chunk_len_ms = chunk_len_ms
self.chunk_len_us = chunk_len_ms*1000
self.sparse_frame_len_us = int(self.samples_folder.split('/')[-3].split('_')[-1]) # len of each loaded sparse frame
self.sparse_frame_len_ms = self.sparse_frame_len_us // 1000
assert self.chunk_len_us % self.sparse_frame_len_us == 0
self.chunk_size = self.chunk_len_us // self.sparse_frame_len_us # Size of the grouped frame chunks
self.height = height
self.width = width
self.min_patches_per_chunk = min_patches_per_chunk
self.min_events_per_chunk = min_events_per_chunk
self.num_extra_chunks = num_extra_chunks
# Define data augmentation functions
print(augmentation_params, 'max_sample_len_ms' in augmentation_params, augmentation_params['max_sample_len_ms'] != -1)
# self.crop_in_time, self.crop_in_space, self.drop_token, self.random_shift, self.crop_events = None, None, None, None, None
self.augmentation_params = augmentation_params
if augmentation_params is not None and len(augmentation_params) != 0:
if 'max_sample_len_ms' in augmentation_params and augmentation_params['max_sample_len_ms'] != -1:
# assert augmentation_params['max_sample_len_ms'] % self.sparse_frame_len_ms == 0
self.num_sparse_frames = augmentation_params['max_sample_len_ms'] // self.sparse_frame_len_ms
# self.crop_in_time = self.get_crop_in_time_func(augmentation_params['max_sample_len_ms'])
if 'random_frame_size' in augmentation_params and augmentation_params['random_frame_size'] is not None:
self.x_lims = (int(width*augmentation_params['random_frame_size']), width)
self.y_lims = (int(height*augmentation_params['random_frame_size']), height)
# self.crop_in_space = self.get_crop_in_space_func((int(height*augmentation_params['random_frame_size']), height),
# (int(width*augmentation_params['random_frame_size']), width))
if 'drop_token' in augmentation_params and augmentation_params['drop_token'][0] != 0.0:
self.drop_perc, self.drop_mode = augmentation_params['drop_token']
# self.drop_token = self.get_drop_token_function(*augmentation_params['drop_token'])
if 'random_shift' in augmentation_params and augmentation_params['random_shift']:
# self.random_shift = self.get_shift_func()
pass
if 'crop_to_max_events' in augmentation_params and augmentation_params['crop_to_max_events'] is not None:
raise ValueError('Not Implemented')
min_crop = min([ min(s) for s in augmentation_params['random_frame_size'] ]) if self.crop_in_space else min(height, width)
med_frame_size = 128-(128-min_crop)//2
res = json.load(open('./datasets/DvsGesture/dataset_stats_{}.json'.format(med_frame_size), 'r'))
max_events = int(res[str(self.chunk_len_ms)][augmentation_params['crop_to_max_events']])
if self.drop_token: max_events = int(max_events*(1-augmentation_params['drop_token'][0]))
self.max_events_per_chunk = max_events
# self.crop_events = self.get_crop_to_max_events(max_events)
self.h_flip = augmentation_params.get('h_flip', False)
# print('+'*20, self.crop_in_time, self.crop_in_space, self.drop_token, self.random_shift)
self.bins = bins
self.preproc_polarity = preproc_polarity
self.patch_size = patch_size
self.original_event_size = 1 if '1' in self.preproc_polarity else 2
self.preproc_event_size = self.original_event_size*bins
self.token_dim = patch_size*patch_size * self.preproc_event_size
if min_activations_per_patch > 0 and min_activations_per_patch <= 1:
self.min_activations_per_patch = int(min_activations_per_patch*patch_size*patch_size+1)
else: self.min_activations_per_patch = 0
print(f' * patch_size {patch_size}x{patch_size} [{patch_size*patch_size}] | min_activations {self.min_activations_per_patch}')
self.height = height
self.width = width
self.samples = os.listdir(samples_folder)
if dataset_name == 'DVS128':
for l in classes_to_exclude:
self.samples = [ s for s in self.samples if '_label{:02}'.format(l) not in s ]
self.labels = np.array([ int(t[5:7]) for s in self.samples for t in s.split('_') if 'label' in t ]).astype('int8')
self.unique_labels = { l:i for i,l in enumerate(sorted(set(self.labels))) }
self.labels = [ self.unique_labels[l] for l in self.labels ]
self.num_classes = len(self.unique_labels)
elif dataset_name in ['ASL_DVS', 'HMDB', 'UCF101', 'UCF50', 'SLAnimals_4s', 'SLAnimals_3s', 'N_Cars', 'Caltech']:
self.labels = [ s.split('_')[-1][:-5] for s in self.samples ]
self.unique_labels = { l:i for i,l in enumerate(sorted(set(self.labels))) }
self.labels = [ self.unique_labels[l] for l in self.labels ]
self.num_classes = len(self.unique_labels)
else: raise ValueError(f'dataset_name [{dataset_name}] not handled')
def get_class_weights(self):
label_dict = self.get_label_dict()
label_dict = { k:label_dict[k] for k in sorted(label_dict) }
num_samples = sum([ len(v) for v in label_dict.values() ])
# max_len = max([ len(v) for v in label_dict.values() ])
# class_weigths = { k:max_len/len(v) for k,v in label_dict.items() }
# class_weigths = { k:(len(v), num_samples/(len(label_dict)*len(v))) for k,v in label_dict.items() }
# class_weigths = { k:num_samples/(len(label_dict)*len(v)) for k,v in label_dict.items() }
class_weigths = [ num_samples/(len(label_dict)*len(v)) for k,v in label_dict.items() ]
return torch.tensor(class_weigths)
# Crop sequence to self.num_sparse_frames
# def get_crop_in_time_func(self, max_sample_len_ms):
# assert max_sample_len_ms % self.sparse_frame_len_ms == 0
# num_sparse_frames = max_sample_len_ms // self.sparse_frame_len_ms
# # print('num_sparse_frames', num_sparse_frames)
# def crop(total_events):
# # print('Cropping:', len(total_events))
# if len(total_events) > num_sparse_frames:
# if not self.validation: # Crop sequence randomly
# init = np.random.randint(len(total_events) - num_sparse_frames)
# end = init + num_sparse_frames
# total_events = total_events[init:end]
# else: # Crop to the middle part
# init = (len(total_events) - num_sparse_frames) // 2
# end = init + num_sparse_frames
# total_events = total_events[init:end]
# # assert len(total_events) < num_sparse_frames, str(len(total_events)) + ' ' + str(num_sparse_frames)
# return total_events
# # print('Return crop func')
# return crop
def crop_in_time(self, total_events):
# print('Cropping:', len(total_events))
if len(total_events) > self.num_sparse_frames:
if not self.validation: # Crop sequence randomly
init = np.random.randint(len(total_events) - self.num_sparse_frames)
end = init + self.num_sparse_frames
total_events = total_events[init:end]
else: # Crop to the middle part
init = (len(total_events) - self.num_sparse_frames) // 2
end = init + self.num_sparse_frames
total_events = total_events[init:end]
# assert len(total_events) < num_sparse_frames, str(len(total_events)) + ' ' + str(num_sparse_frames)
return total_events
# Crop sequence in space
# x_lims/y_lims -> (min/max length) -> (length, not coordinates)
# def get_crop_in_space_func(self, x_lims, y_lims):
# # print('get_crop_in_space_func', x_lims, y_lims)
# def crop(total_events):
# _, y_size, x_size, _ = total_events.shape
# # print((y_lims, x_lims), (y_size, x_size), total_events.shape)
# if not self.validation: # Crop sequence randomly
# new_x_size = np.random.randint(x_lims[0], x_lims[1]+1)
# new_y_size = np.random.randint(y_lims[0], y_lims[1]+1)
# if self.patch_size != 1:
# new_x_size -= new_x_size % self.patch_size
# new_y_size -= new_y_size % self.patch_size
# x_init = np.random.randint(x_size - new_x_size+1); x_end = x_init + new_x_size
# y_init = np.random.randint(y_size - new_y_size+1); y_end = y_init + new_y_size
# # total_events = total_events[:, x_init:x_end, y_init:y_end, :]
# total_events = total_events[:, y_init:y_end, x_init:x_end, :]
# else: # Crop to the middle part
# new_x_size = (x_lims[0] + x_lims[1])//2
# new_y_size = (y_lims[0] + y_lims[1])//2
# if self.patch_size != 1:
# new_x_size -= new_x_size % self.patch_size
# new_y_size -= new_y_size % self.patch_size
# x_init = (x_size - new_x_size)//2; x_end = x_init + new_x_size
# y_init = (y_size - new_y_size)//2; y_end = y_init + new_y_size
# # total_events = total_events[:, x_init:x_end, y_init:y_end, :]
# total_events = total_events[:, y_init:y_end, x_init:x_end, :]
# # print('total_events.shape', total_events.shape, (new_y_size, new_x_size))
# assert total_events.shape[1] == new_y_size and total_events.shape[2] == new_x_size
# return total_events
# return crop
def crop_in_space(self, total_events):
# print(type(total_events), len(total_events), total_events.shape)
_, y_size, x_size, _ = total_events.shape
# print(self.y_lims, '|', self.x_lims, '|', total_events.shape)
if not self.validation: # Crop sequence randomly
new_x_size = np.random.randint(self.x_lims[0], self.x_lims[1]+1)
new_y_size = np.random.randint(self.y_lims[0], self.y_lims[1]+1)
if self.patch_size != 1:
new_x_size -= new_x_size % self.patch_size
new_y_size -= new_y_size % self.patch_size
x_init = np.random.randint(x_size - new_x_size+1); x_end = x_init + new_x_size
y_init = np.random.randint(y_size - new_y_size+1); y_end = y_init + new_y_size
# total_events = total_events[:, x_init:x_end, y_init:y_end, :]
total_events = total_events[:, y_init:y_end, x_init:x_end, :]
else: # Crop to the middle part
new_x_size = (self.x_lims[0] + self.x_lims[1])//2
new_y_size = (self.y_lims[0] + self.y_lims[1])//2
if self.patch_size != 1:
new_x_size -= new_x_size % self.patch_size
new_y_size -= new_y_size % self.patch_size
x_init = (x_size - new_x_size)//2; x_end = x_init + new_x_size
y_init = (y_size - new_y_size)//2; y_end = y_init + new_y_size
# total_events = total_events[:, x_init:x_end, y_init:y_end, :]
total_events = total_events[:, y_init:y_end, x_init:x_end, :]
# print('total_events.shape', total_events.shape, (new_y_size, new_x_size))
# print(total_events.shape, '|', new_y_size, y_init, y_end, '|', new_x_size, x_init, x_end)
assert total_events.shape[1] == new_y_size and total_events.shape[2] == new_x_size, print(total_events.shape, new_y_size, new_x_size)
return total_events
# Remove random events from sequence based on percentage
# drop_mode == 'fixed' -> drop same pixels for all the sequence
# drop_mode == 'rand' -> drop random events in each time-step
# def get_drop_token_function(self, drop_perc, drop_mode):
# def drop_token(total_events):
# if self.validation:
# return total_events
# if drop_mode == 'rand':
# mask = np.random.rand(*total_events.shape[:-1]) < drop_perc
# total_events[mask] = 0.0
# elif drop_mode == 'fixed':
# mask = np.random.rand(*total_events.shape[1:-1]) < drop_perc
# total_events[:, mask] = 0.0
# return total_events
# return drop_token
def drop_token(self, total_events):
if self.validation:
return total_events
if self.drop_mode == 'rand':
mask = np.random.rand(*total_events.shape[:-1]) < self.drop_perc
total_events[mask] = 0.0
elif self.drop_mode == 'fixed':
mask = np.random.rand(*total_events.shape[1:-1]) < self.drop_perc
total_events[:, mask] = 0.0
return total_events
# def get_shift_func(self):
# def shift(total_pixels, cropped_shape):
# height_diff, width_diff = self.height - cropped_shape[1], self.width - cropped_shape[0]
# # print(height_diff, width_diff, cropped_shape, self.height, self.width)
# if not self.validation:
# new_height_init = np.random.randint(0, height_diff) if height_diff != 0.0 else 0
# new_width_init = np.random.randint(0, width_diff) if width_diff != 0.0 else 0
# else:
# new_height_init, new_width_init = height_diff // 2, width_diff // 2,
# for i in range(len(total_pixels)):
# total_pixels[i][:, 1] += new_height_init
# total_pixels[i][:, 0] += new_width_init
# return total_pixels
# return shift
def shift(self, total_pixels, cropped_shape):
height_diff, width_diff = self.height - cropped_shape[0], self.width - cropped_shape[1]
# print(height_diff, width_diff, cropped_shape, self.height, self.width)
if not self.validation:
new_height_init = np.random.randint(0, height_diff) if height_diff != 0.0 else 0
new_width_init = np.random.randint(0, width_diff) if width_diff != 0.0 else 0
else:
new_height_init, new_width_init = height_diff // 2, width_diff // 2
# print(1, new_height_init, new_width_init, self.height, self.width, cropped_shape)
new_height_init -= new_height_init % self.patch_size #; new_height_init += self.patch_size//2
new_width_init -= new_width_init % self.patch_size #; new_width_init += self.patch_size//2
# print(2, new_height_init, new_width_init)
for i in range(len(total_pixels)):
total_pixels[i][:, 0] += new_height_init
total_pixels[i][:, 1] += new_width_init
return total_pixels
# def get_crop_to_max_events(self, max_events_per_chunk):
# print(' *** get_crop_to_max_events', max_events_per_chunk)
# def crop_to_max_events(total_polarity, total_pixels):
# if not self.validation:
# for i in range(len(total_pixels)):
# if len(total_polarity[i]) > max_events_per_chunk:
# inds = np.random.choice(list(range(len(total_polarity[i]))), size=max_events_per_chunk, replace=False)
# # print(inds)
# # print('----', total_polarity[i].shape, len(total_polarity[i]), max_events_per_chunk)
# total_polarity[i] = total_polarity[i][inds]
# # print('++++', total_polarity[i].shape)
# total_pixels[i] = total_pixels[i][inds]
# return total_polarity, total_pixels
# return crop_to_max_events
def crop_to_max_events(self, total_polarity, total_pixels):
if not self.validation:
for i in range(len(total_pixels)):
if len(total_polarity[i]) > self.max_events_per_chunk:
inds = np.random.choice(list(range(len(total_polarity[i]))), size=self.max_events_per_chunk, replace=False)
# print(inds)
# print('----', total_polarity[i].shape, len(total_polarity[i]), self.max_events_per_chunk)
total_polarity[i] = total_polarity[i][inds]
# print('++++', total_polarity[i].shape)
total_pixels[i] = total_pixels[i][inds]
return total_polarity, total_pixels
def __len__(self):
return len(self.samples)
def get_label_dict(self):
label_dict = { c:[] for c in set(self.labels) }
for i,l in enumerate(self.labels): label_dict[l].append(i)
for k in label_dict: label_dict[k] = torch.IntTensor(label_dict[k])
return label_dict
# Return -> [num_timesteps, num_chunk_events, 2pol] | [num_timesteps, num_chunk_events, 2pix_xy], [num_timesteps]
# def __getitem__(self, idx, return_sparse_array=False):
def __getitem_v0__(self, idx, return_sparse_array=False):
# print('*********')
filename = self.samples[idx]
label = self.labels[idx]
# Load sparse matrix
total_events = pickle.load(open(os.path.join(self.samples_folder + filename), 'rb')) # events (t x H x W x 2)
total_events = total_events.todense()
# print('****** total_events.shape', total_events.shape)
# Crop sequence to self.num_sparse_frames
# if self.crop_in_time: total_events = self.crop_in_time(total_events)
# if self.crop_in_space: total_events = self.crop_in_space(total_events)
# if self.drop_token: total_events = self.drop_token(total_events)
if 'max_sample_len_ms' in self.augmentation_params and self.augmentation_params['max_sample_len_ms'] != -1:
total_events = self.crop_in_time(total_events)
if 'random_frame_size' in self.augmentation_params and self.augmentation_params['random_frame_size'] is not None:
total_events = self.crop_in_space(total_events)
if 'drop_token' in self.augmentation_params and self.augmentation_params['drop_token'][0] != 0.0:
total_events = self.drop_token(total_events)
# Slice and group into self.chunk_len_ms length
diff_frames = total_events.shape[0] % self.chunk_size
if diff_frames != 0 and total_events.shape[0] > self.chunk_size :
if np.random.rand() < 0: total_events = total_events[:diff_frames]
else: total_events = total_events[diff_frames:]
# total_chunks = [ total_events[i:i+self.chunk_size].todense() for i in range(0, total_events.shape[0], self.chunk_size) ] # .sum(0)
total_chunks = [ total_events[i:i+self.chunk_size] for i in range(0, total_events.shape[0], self.chunk_size) ] # .sum(0)
# total_chunks = [ c.sum(0) for c in total_chunks ]
if return_sparse_array: return total_chunks
else:
total_pixels, total_polarity = [], []
for nc, c in enumerate(total_chunks):
bins_init = c.shape[0]; bins_step = bins_init//self.bins
if bins_step == 0:
print('*****', c.shape, 0, bins_init, bins_step)
print(f'Empty chunk [{nc}]')
continue
# c = np.concatenate([ c[i:i+bins_step].sum(0) for i in range(0, bins_init, bins_step) ], axis=2)
c = np.stack([ c[i:i+bins_step].sum(0) for i in range(0, bins_init, bins_step) ], axis=-1)
# c = [ c[i:i+bins_step].sum(0) for i in range(0, bins_init, bins_step) ]
if '1' in self.preproc_polarity: c = c.sum(2, keepdims=True)
c = c.reshape(c.shape[0], c.shape[1], c.shape[2]*c.shape[3])
if 'log' in self.preproc_polarity: c = np.log(c + 1)
elif 'unique' in self.preproc_polarity: c = (c>0).astype('float')
elif 'norm' in self.preproc_polarity:
raise ValueError('Not implemented')
# c = c / c.max(2, keepdims=True) # [0]
polarity = view_as_blocks(c, (self.patch_size,self.patch_size, self.preproc_event_size));
# aggregate by pixel (unique), by patch (sum) -> get the ones with >= min_activations | (num_patches, bool)
inds = (polarity.sum(-1)!=0).reshape(polarity.shape[0], polarity.shape[1], self.patch_size*self.patch_size) \
.sum(-1).reshape(polarity.shape[0] * polarity.shape[1]) >= self.min_activations_per_patch
# Reshape to (num_patches x token_dim)
polarity = polarity.reshape(polarity.shape[0] * polarity.shape[1], self.token_dim)
pixels = np.array([ (i+self.patch_size//2,j+self.patch_size//2) for i in range(0, c.shape[0], self.patch_size) for j in range(0, c.shape[1], self.patch_size) ])
polarity, pixels = polarity[inds], pixels[inds]
total_pixels.append(torch.tensor(pixels).long()); total_polarity.append(torch.tensor(polarity).long())
# assert len(total_pixels) > 0
# if self.crop_events: total_polarity, total_pixels = self.crop_events(total_polarity, total_pixels)
# if self.random_shift: total_pixels = self.random_shift(total_pixels, total_events.shape[1:-1])
if 'crop_to_max_events' in self.augmentation_params and self.augmentation_params['crop_to_max_events'] is not None:
total_polarity, total_pixels = self.crop_to_max_events(total_polarity, total_pixels)
if 'random_shift' in self.augmentation_params and self.augmentation_params['random_shift']:
total_pixels = self.shift(total_pixels, total_events.shape[1:-1])
return total_polarity, total_pixels, label
# Return -> [num_timesteps, num_chunk_events, 2pol] | [num_timesteps, num_chunk_events, 2pix_xy], [num_timesteps]
def __getitem__(self, idx, return_sparse_array=False):
# def __getitem_v1__(self, idx, return_sparse_array=False):
# %%
# print(idx)
# raise ValueError('**********')
filename = self.samples[idx]
label = self.labels[idx]
# Load sparse matrix
total_events = pickle.load(open(os.path.join(self.samples_folder + filename), 'rb')) # events (t x H x W x 2)
# total_events = total_events.todense()
# print('****** total_events.shape', total_events.shape, filename)
##############################################
##############################################
##############################################
# self.chunk_len_ms = 8 # ms
# self.sparse_frame_len_ms = 2 # each sparse frame is 2 ms
# self.augmentation_params['max_sample_len_ms'] = 500 # Each sequence must last 500 ms
# # self.num_sparse_frames = augmentation_params['max_sample_len_ms'] // self.sparse_frame_len_ms
# self.num_sparse_frames = 250 # 250 sparse frames needed
# self.chunk_size = 4 # Number of sparse frames needed to complete a chunk
# self.bins = 4
# self.min_patches_per_chunk = None
# self.min_events_per_chunk = None
# self.min_activations_per_patch = int(0.05*self.patch_size*self.patch_size+1)
##############################################
##############################################
##############################################
# Crop sequence to self.num_sparse_frames
dense = False
if 'max_sample_len_ms' in self.augmentation_params and self.augmentation_params['max_sample_len_ms'] != -1:
total_events = self.crop_in_time(total_events)
if not self.validation and 'rotate' in self.augmentation_params and self.augmentation_params['rotate'] is not None and len(self.augmentation_params['rotate']) > 0:
total_events = total_events.todense(); dense = True
angl = np.random.uniform(-self.augmentation_params['rotate']['angle'], self.augmentation_params['rotate']['angle'])
total_events = ndimage.rotate(total_events, angl, axes=(2,1), reshape=False, mode=self.augmentation_params['rotate']['mode'])
if 'random_frame_size' in self.augmentation_params and self.augmentation_params['random_frame_size'] is not None:
total_events = self.crop_in_space(total_events)
# print('****', total_events.shape)
if not self.validation and self.h_flip and np.random.rand() > 0.5: total_events = total_events[:,:,::-1,:]
# if self.center_frame:
# pass
# 1.0. Get chunks by grouping sparse frames
total_pixels, total_polarity = [], []
current_chunk = None
# sf = total_events[0]
# for sf_num, sf in enumerate(total_events[::-1]):
# for sf_num in list(range(len(total_events)-1,-1, -1))[::2]:
# NUM_EXTRA_CHUNKS = 2
sf_num = len(total_events) - 1
while sf_num >= 0:
# print(sf_num)
if current_chunk is None:
# print(sf_num-self.chunk_size, sf_num)
current_chunk = total_events[max(0, sf_num-self.chunk_size):sf_num][::-1]
if not dense: current_chunk = current_chunk.todense()
sf_num -= self.chunk_size
# current_chunk = total_events[min(0, sf_num-self.chunk_size):sf_num][::-1]; sf_num -= self.chunk_size
if '1' in self.preproc_polarity: current_chunk = current_chunk.sum(-1, keepdims=True)
else:
sf = total_events[max(0, sf_num-self.num_extra_chunks):sf_num][::-1]
if not dense: sf = sf.todense()
sf_num -= self.num_extra_chunks
# sf = total_events[min(0, sf_num-self.num_extra_chunks):sf_num][::-1]; sf_num -= self.num_extra_chunks
if '1' in self.preproc_polarity: sf = sf.sum(-1, keepdims=True)
current_chunk = np.concatenate([current_chunk, sf])
# sf = np.stack([total_events[sf_num], total_events[sf_num-1]]).todense()
# # print(sf_num)
# # TODO: get 2 sparse frames at the same time
# # sf = sf.todense()
# if '1' in self.preproc_polarity: sf = sf.sum(-1, keepdims=True)
# # if current_chunk is None: current_chunk = sf[np.newaxis, ...]
# # else: current_chunk = np.concatenate([current_chunk, sf[np.newaxis, ...]])
# if current_chunk is None: current_chunk = sf
# else: current_chunk = np.concatenate([current_chunk, sf])
# if len(current_chunk) < self.chunk_size:
# # print('aaaaaaaaaaaaaaaa', current_chunk.shape, self.chunk_size, sf_num)
# continue
# else:
if current_chunk.shape[0] >= self.bins:
# print(0, current_chunk.shape)
# Get bins
bins_init = current_chunk.shape[0];
bins_step = bins_init//self.bins
# if bins_step*self.bins < bins_init: bins_step = bins_init//(self.bins-1)
if bins_step == 0:
print('*****', current_chunk.shape, 0, bins_init, bins_step)
# print(f'Empty chunk [{nc}]')
# continue
# chunk_candidate = np.stack([ current_chunk[i:i+bins_step].sum(0) for i in range(0, bins_init, bins_step) ], axis=-1)
chunk_candidate = []
for ib_num, i in enumerate(list(range(0, bins_init, bins_step))[:self.bins]):
if ib_num == self.bins-1: step = 99999
else: step = bins_step
chunk_candidate.append(current_chunk[i:i+step].sum(0))
chunk_candidate = np.stack(chunk_candidate, axis=-1).astype(float)
# chunk_candidate = np.stack([ current_chunk[i:i+bins_step].sum(0) for i in list(range(0, bins_init, bins_step))[:self.bins] ], axis=-1)
chunk_candidate = chunk_candidate.reshape(chunk_candidate.shape[0], chunk_candidate.shape[1], chunk_candidate.shape[2]*chunk_candidate.shape[3])
# print('chunk_candidate.shape', chunk_candidate.shape)
# Extract patches
# print('1,', sf.shape, current_chunk.shape, chunk_candidate.shape)
# print('aaa', current_chunk.shape, chunk_candidate.shape, (self.patch_size,self.patch_size, self.preproc_event_size), list(range(0, bins_init, bins_step)))
polarity = view_as_blocks(chunk_candidate, (self.patch_size,self.patch_size, self.preproc_event_size));
# aggregate by pixel (unique), by patch (sum) -> get the ones with >= min_activations | (num_patches, bool)
inds = (polarity.sum(-1)!=0).reshape(polarity.shape[0], polarity.shape[1], self.patch_size*self.patch_size) \
.sum(-1).reshape(polarity.shape[0] * polarity.shape[1]) >= self.min_activations_per_patch
if inds.sum() == 0: continue
# Check if chunk has the desired patch activations and #events
if self.min_patches_per_chunk and inds.sum() < self.min_patches_per_chunk: continue
if self.min_events_per_chunk and polarity.sum() < self.min_events_per_chunk: continue
# break
# Good chunk -> process and store
# Reshape to (num_patches x token_dim)
polarity = polarity.reshape(polarity.shape[0] * polarity.shape[1], self.patch_size*self.patch_size*self.preproc_event_size) # self.token_dim
pixels = np.array([ (i+self.patch_size//2,j+self.patch_size//2) for i in range(0, chunk_candidate.shape[0], self.patch_size) for j in range(0, chunk_candidate.shape[1], self.patch_size) ])
# pixels = np.array([ (i,j) for i in range((self.patch_size//2), chunk_candidate.shape[1], self.patch_size) for j in range((self.patch_size//2), chunk_candidate.shape[0], self.patch_size) ])
# print(2, polarity.shape, pixels.shape)
# print(pixels)
inds = np.where(inds)[0]
# print(f'{len(total_pixels)} || {inds.shape[0]} patches || {polarity.sum()} events')
# 1.1. Drop patch tokens
# Apply over the final patch-tokens
if not self.validation and len(inds)>0 and 'drop_token' in self.augmentation_params and self.augmentation_params['drop_token'][0] != 0.0:
# inds = self.drop_token(inds)
inds = np.random.choice(inds, replace=False, size=max(1, int(len(inds)*(1-self.augmentation_params['drop_token'][0]))))
# print('*******', inds.shape, polarity.shape, pixels.shape)
polarity, pixels = polarity[inds], pixels[inds]
if 'log' in self.preproc_polarity: polarity = np.log(polarity + 1)
elif 'unique' in self.preproc_polarity: polarity = (polarity>0).astype('float')
elif 'norm' in self.preproc_polarity:
raise ValueError('Not implemented')
# c = c / c.max(2, keepdims=True) # [0]
assert len(pixels) > 0 and len(polarity) > 0
# 2.0. Process token_dim
total_polarity.append(torch.tensor(polarity))
total_pixels.append(torch.tensor(pixels).long())
current_chunk = None
# Ensure at least one chunk in the list
if len(total_pixels) == 0 and current_chunk.shape[0] >= self.bins:
# Get bins
bins_init = current_chunk.shape[0];
bins_step = bins_init//self.bins
# if bins_step*self.bins < bins_init: bins_step = bins_init//(self.bins-1)
if bins_step == 0:
print('*****', current_chunk.shape, 0, bins_init, bins_step)
# print(f'Empty chunk [{nc}]')
# continue
# chunk_candidate = np.stack([ current_chunk[i:i+bins_step].sum(0) for i in range(0, bins_init, bins_step) ], axis=-1)
chunk_candidate = []
for ib_num, i in enumerate(list(range(0, bins_init, bins_step))[:self.bins]):
if ib_num == self.bins-1: step = 99999
else: step = bins_step
chunk_candidate.append(current_chunk[i:i+step].sum(0))
chunk_candidate = np.stack(chunk_candidate, axis=-1).astype(float)
# chunk_candidate = np.stack([ current_chunk[i:i+bins_step].sum(0) for i in list(range(0, bins_init, bins_step))[:self.bins] ], axis=-1)
chunk_candidate = chunk_candidate.reshape(chunk_candidate.shape[0], chunk_candidate.shape[1], chunk_candidate.shape[2]*chunk_candidate.shape[3])
# Extract patches
# print('1,', sf.shape, current_chunk.shape, chunk_candidate.shape)
polarity = view_as_blocks(chunk_candidate, (self.patch_size,self.patch_size, self.preproc_event_size));
# aggregate by pixel (unique), by patch (sum) -> get the ones with >= min_activations | (num_patches, bool)
inds = (polarity.sum(-1)!=0).reshape(polarity.shape[0], polarity.shape[1], self.patch_size*self.patch_size) \
.sum(-1).reshape(polarity.shape[0] * polarity.shape[1]) >= self.min_activations_per_patch
if inds.sum() == 0:
inds = (polarity.sum(-1)!=0).reshape(polarity.shape[0], polarity.shape[1], self.patch_size*self.patch_size) \
.sum(-1).reshape(polarity.shape[0] * polarity.shape[1]) >= 1.0
if inds.sum() == 0:
inds = (polarity.sum(-1)!=0).reshape(polarity.shape[0], polarity.shape[1], self.patch_size*self.patch_size) \
.sum(-1).reshape(polarity.shape[0] * polarity.shape[1]) >= 0.0
if inds.sum() == 0:
print(len(inds), inds.sum(), current_chunk.shape, chunk_candidate.shape, sf_num, len(total_polarity), len(total_pixels), total_events.shape, filename)
# break
# Good chunk -> process and store
# Reshape to (num_patches x token_dim)
polarity = polarity.reshape(polarity.shape[0] * polarity.shape[1], self.patch_size*self.patch_size*self.preproc_event_size) # self.token_dim
pixels = np.array([ (i+self.patch_size//2,j+self.patch_size//2) for i in range(0, chunk_candidate.shape[0], self.patch_size) for j in range(0, chunk_candidate.shape[1], self.patch_size) ])
# print(2, polarity.shape, pixels.shape)
inds = np.where(inds)[0]
# print(f'{len(total_pixels)} || {inds.shape[0]} patches || {polarity.sum()} events')
# 1.1. Drop patch tokens
# Apply over the final patch-tokens
if not self.validation and len(inds)>0 and 'drop_token' in self.augmentation_params and self.augmentation_params['drop_token'][0] != 0.0:
# inds = self.drop_token(inds)
inds = np.random.choice(inds, replace=False, size=max(1, int(len(inds)*(1-self.augmentation_params['drop_token'][0]))))
# print('*******', inds.shape, polarity.shape, pixels.shape)
polarity, pixels = polarity[inds], pixels[inds]
if 'log' in self.preproc_polarity: polarity = np.log(polarity + 1)
elif 'unique' in self.preproc_polarity: polarity = (polarity>0).astype('float')
elif 'norm' in self.preproc_polarity:
raise ValueError('Not implemented')
# c = c / c.max(2, keepdims=True) # [0]
# 2.0. Process token_dim
assert len(pixels) > 0 and len(polarity) > 0
total_polarity.append(torch.tensor(polarity))
total_pixels.append(torch.tensor(pixels).long())
current_chunk = None
if 'random_shift' in self.augmentation_params and self.augmentation_params['random_shift']:
total_pixels = self.shift(total_pixels, total_events.shape[1:-1])
# assert len(total_polarity) > 0 and len(total_pixels) > 0, f'{len(total_pixels)} , {len(total_polarity)} , {current_chunk.shape} , {self.bins} , {total_events.shape} , {filename}'
return total_polarity, total_pixels, label
# Return the batch sample indices randomly.
class CustomBatchSampler():
# TODO: remove used samples from dict and re-create when empty ?
# - TODO: add samples_per_class
def __init__(self, batch_size, label_dict, sample_repetitions=1, drop_last=False):
assert batch_size % sample_repetitions == 0
self.batch_size = batch_size
self.label_dict = label_dict
self.sample_repetitions = sample_repetitions
self.drop_last = drop_last
self.generator = torch.Generator()
self.generator.manual_seed(0)
self.num_classes = len(self.label_dict)
self.unique_labels = list(self.label_dict.keys())
def __len__(self):
epoch_length = sum([ len(v) for v in self.label_dict.values() ])*self.sample_repetitions // self.batch_size
print('**********', epoch_length)
return epoch_length
# return 5
def __iter__(self):
# if self.label_dict is not None:
# keys = list(self.label_dict.keys())
# num_classes = len(keys)
total_labels = []
while True:
# ks = []
inds = []
for b in range(self.batch_size // self.sample_repetitions):
if len(total_labels) == 0: total_labels = self.unique_labels.copy()
k = np.random.randint(0, len(total_labels), size=(1))[0]
k = total_labels.pop(k)
# ks.append(k)
# if self.sample_dict is not None:
# k = torch.randint(0, self.num_classes, size=(1,), generator=self.generator)[0].item()
# k = np.random.randint(0, self.num_classes, size=(1))[0]
# k = keys[torch.randint(0, num_classes, size=(1,), generator=self.generator)[0].item()]
num_k_samples = len(self.label_dict[k])
# ind = torch.randint(0, num_k_samples, size=(1,), generator=self.generator)[0].item()
ind = np.random.randint(0, num_k_samples, size=(1))[0]
ind = self.label_dict[k][ind]
for _ in range(self.sample_repetitions): inds.append(ind)
# print('***', len(ks), ks)
yield inds
# Pad sequences by timesteps and events
# Samples: ([batch_size], [timesteps/chunk], [events], event_data)
def pad_list_of_sequences(samples, token_size, pre_padding = True):
# print(f'time_steps || max {max([ len(s) for s in samples ])} | mean {np.mean([ len(s) for s in samples ])}')
# print(f'events_num || max {max([ chunk.shape[0] for sample in samples for chunk in sample ])} | mean {np.mean([ chunk.shape[0] for sample in samples for chunk in sample ])}')
max_timesteps = max([ len(s) for s in samples ])
batch_size = len(samples)
max_event_num = max([ chunk.shape[0] for sample in samples for chunk in sample ])
# token_size = samples[0][0][0].shape[-1]
batch_data = torch.zeros(max_timesteps, batch_size, max_event_num, token_size)
for num_sample, action_sample in enumerate(samples):
num_chunks = len(action_sample)
# print([ c.shape for c in action_sample ])
for chunk_num, chunk in enumerate(action_sample):
chunk_events = chunk.shape[0]
# print(' ** {} {}'.format(batch_data.shape, chunk_events))
if chunk_events == 0:
# pass
continue
if pre_padding: batch_data[-(num_chunks-chunk_num), num_sample, -chunk_events:, :] = chunk
else: batch_data[chunk_num, num_sample, :chunk_events, :] = chunk
return batch_data
# def get_custom_collate_fn(pre_padding = True):
# def custom_collate_fn(batch_samples):
# pols, pixels, labels = [], [], []
# for sample in batch_samples:
# pols.append(sample[0])
# pixels.append(sample[1])
# labels.append(sample[2])
# token_size = pols[0][0].shape[-1]
# pols = pad_list_of_sequences(pols, token_size, pre_padding)
# pixels = pad_list_of_sequences(pixels, 2, pre_padding)
# # if '1' in preproc_polarity: pols = pols.sum(-1, keepdims=True)
# # if 'log' in preproc_polarity: pols = torch.log(pols + 1)
# # elif 'unique' in preproc_polarity: pols = (pols>0).float()
# # elif 'norm' in preproc_polarity: pols = pols / pols.max(2, True)[0]
# pols, pixels, labels = pols, pixels.long(), torch.tensor(labels).long()
# # print('+++++', pols.shape, pixels.shape, labels.shape)
# return pols, pixels, labels
# return custom_collate_fn
class DVS128DataModule(LightningDataModule):
def __init__(self, batch_size, chunk_len_ms,
patch_size, min_activations_per_patch, bins,
min_patches_per_chunk, min_events_per_chunk, num_extra_chunks,
augmentation_params,
dataset_name,
from_frames=True,
skip_last_event=False, sample_repetitions=1, preproc_polarity=None,
one_sample_per_chunk=False,
custom_sampler = True,
workers=8, pin_memory=False, classes_to_exclude=[], balance=None):
super().__init__()
self.batch_size = batch_size
# self.event_size = event_size
self.chunk_len_ms = chunk_len_ms
self.patch_size = patch_size
self.min_activations_per_patch = min_activations_per_patch
self.bins = bins
self.min_patches_per_chunk = min_patches_per_chunk
self.min_events_per_chunk = min_events_per_chunk
self.num_extra_chunks = num_extra_chunks
self.augmentation_params = augmentation_params
self.dataset_name = dataset_name
self.from_frames = from_frames
self.workers = workers
self.sample_repetitions = sample_repetitions
self.preproc_polarity = preproc_polarity
self.skip_last_event = skip_last_event
self.pin_memory = pin_memory
self.classes_to_exclude = classes_to_exclude
self.pre_padding = True
self.one_sample_per_chunk = one_sample_per_chunk
self.custom_sampler = custom_sampler
assert self.chunk_len_ms / 2 % self.bins == 0.0
if not from_frames: raise ValueError('not from_frames not implemented')
self.dataset_name = dataset_name
if dataset_name == 'DVS128':
# if self.chunk_len_ms == 8 or self.bins not in [1,2]: self.data_folder = './datasets/DvsGesture/clean_dataset_frames_2000/'
# # self.data_folder = './datasets/DvsGesture/clean_dataset_frames_6000/'
# else: self.data_folder = './datasets/DvsGesture/clean_dataset_frames_12000/'
self.data_folder = './datasets/DvsGesture/clean_dataset_frames_2000/'
self.width, self.height = 128, 128
self.num_classes = 12 - len(classes_to_exclude)
self.class_mapping = copy.deepcopy(class_mapping)
for c in classes_to_exclude: del self.class_mapping[c]
# self.class_mapping = { i:l for i,_,l in enumerate(sorted(self.class_mapping.items(), key=lambda x:x[0])) }
self.class_mapping = { i:l[1] for i,l in enumerate(sorted(self.class_mapping.items(), key=lambda x:x[0])) }
elif dataset_name == 'ASL_DVS':
self.data_folder = './datasets/ICCV2019_DVS_dataset/clean_dataset_frames_2000/'
self.width, self.height = 240, 180
# self.width, self.height = 180, 240
self.num_classes = 24
self.class_mapping = { i:l for i,l in enumerate('a b c d e f g h i k l m n o p q r s t u v w x y'.split()) }
elif dataset_name == 'HMDB':
self.data_folder = './datasets/HMDB_DVS/dataset_s0.3_2000/'
self.width, self.height = 240, 180
# self.width, self.height = 180, 240
self.num_classes = 51
self.class_mapping = { i:l for i,l in enumerate(range(self.num_classes)) }
elif dataset_name == 'UCF101':
self.data_folder = './datasets/UCF101_DVS/dataset_split1_2000/'
self.width, self.height = 240, 180
# self.width, self.height = 180, 240
self.num_classes = 101
self.class_mapping = { i:l for i,l in enumerate(range(self.num_classes)) }
elif dataset_name == 'UCF50':
self.data_folder = './datasets/UCF50_DVS/dataset_split1_2000/'
self.width, self.height = 240, 180
# self.width, self.height = 180, 240
self.num_classes = 50
self.class_mapping = { i:l for i,l in enumerate(range(self.num_classes)) }
elif dataset_name == 'SLAnimals_3s':
# if self.chunk_len_ms == 8 or self.bins not in [1,2]: self.data_folder = './datasets/SL_animal_splits/dataset_3sets_2000/'
# else: self.data_folder = './datasets/SL_animal_splits/dataset_3sets_12000/'
self.data_folder = './datasets/SL_animal_splits/dataset_3sets_2000/'
self.width, self.height = 128, 128
# self.width, self.height = 180, 240
self.num_classes = 19
self.class_mapping = { i:l for i,l in enumerate(range(self.num_classes)) }
elif dataset_name == 'SLAnimals_4s':
# if self.chunk_len_ms == 8 or self.bins not in [1,2]: self.data_folder = './datasets/SL_animal_splits/dataset_4sets_2000/'
# else: self.data_folder = './datasets/SL_animal_splits/dataset_4sets_12000/'
self.data_folder = './datasets/SL_animal_splits/dataset_4sets_2000/'
self.width, self.height = 128, 128
# self.width, self.height = 180, 240
self.num_classes = 19
self.class_mapping = { i:l for i,l in enumerate(range(self.num_classes)) }
elif dataset_name == 'N_Cars':
self.data_folder = './datasets/Prophesee_Dataset_n_cars/dataset_2000/'
self.width, self.height = 128, 128
# self.width, self.height = 180, 240
self.num_classes = 2
self.class_mapping = { i:l for i,l in enumerate(range(self.num_classes)) }
elif dataset_name == 'Caltech':
self.data_folder = './datasets/N_Caltech_101/clean_dataset_frames_2000/'
self.width, self.height = 240, 180
# self.width, self.height = 180, 240
self.num_classes = 101
self.class_mapping = { i:l for i,l in enumerate(range(self.num_classes)) }
else: raise ValueError(f'Dataset [{dataset_name}] not handled')
# if from_frames: self.data_folder = './datasets/DvsGesture/clean_dataset_frames_2000/'