-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDeepSparseKernel.py
448 lines (403 loc) · 17 KB
/
DeepSparseKernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import autograd.numpy as np
from autograd import grad
import autograd.numpy.random as npr
import matplotlib.pyplot as plt
import math
import sys
from scipy.optimize import fmin_cg, fmin_l_bfgs_b, fmin_ncg
import traceback
def tanh(x):
return np.tanh(x)
def relu(x):
return np.maximum(x, 0.0)
def sigmoid(x):
return np.exp(x) / (1 + np.exp(x))
def erf(x):
# save the sign of x
# sign = 1 if x >= 0 else -1
sign = np.sign(x);
x = np.abs(x)
# constants
a1 = 0.254829592
a2 = -0.284496736
a3 = 1.421413741
a4 = -1.453152027
a5 = 1.061405429
p = 0.3275911
# A&S formula 7.1.26
t = 1.0/(1.0 + p*x)
y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*np.exp(-x*x)
return sign*y
class NN:
def __init__(self, layer_sizes, activations):
self.num_layers = np.copy(len(layer_sizes))
self.layer_sizes = np.copy(layer_sizes)
self.activation = activations
def num_param(self, xdim):
xs = [xdim];
np = 0;
for ls in self.layer_sizes:
xs.append(ls)
for i in range(self.num_layers):
np += (1+xs[i]) * xs[i+1]
return np
def w_nobias(self, w, dim):
"""
return weights without bias, it can be used for the L1/L2 regularizaton
"""
prev_size = dim
start_idx = 0;
wnb = np.array([])
for i in range(self.num_layers):
layer_size = self.layer_sizes[i]
num_w_layer = (prev_size+1) * layer_size;
w_layer = np.reshape(w[start_idx:start_idx+num_w_layer], (prev_size+1, layer_size))[:prev_size, :];
wnb = np.concatenate((wnb, w_layer.reshape(w_layer.size)));
prev_size = layer_size
start_idx += num_w_layer
return wnb
def predict(self, w, x):
dim, num_data = x.shape
out = x;
bias = np.ones((1, num_data));
prev_size = dim
start_idx = 0;
for i in range(self.num_layers):
layer_size = self.layer_sizes[i]
num_w_layer = (prev_size+1) * layer_size;
w_layer = np.reshape(w[start_idx:start_idx+num_w_layer], (prev_size+1, layer_size))
out = self.activation[i](np.dot(w_layer.T, np.concatenate((out, bias))))
prev_size = layer_size
start_idx += num_w_layer
return out
def chol_solve(L, y):
"""
K = L.dot(L.T)
return inv(K) * y
"""
v = np.linalg.solve(L, y)
return np.linalg.solve(L.T, v)
def chol_inv(L):
return chol_solve(L, np.eye(L.shape[0]))
def scale_x(xs, log_lscales):
lscales = np.exp(log_lscales).repeat(xs.shape[1], axis=0).reshape(xs.shape);
return xs / lscales
class DSK_GP:
def __init__(self, train_x, train_y, layer_sizes, activations, bfgs_iter=500, l1=0, l2=0, debug = False):
self.train_x = np.copy(train_x)
self.train_y = np.copy(train_y)
self.mean = np.mean(train_y)
self.dim = self.train_x.shape[0]
self.num_train = self.train_x.shape[1]
self.nn = NN(layer_sizes, activations)
self.num_param = 2 + self.dim + self.nn.num_param(self.dim) # noise + variance + lengthscales + NN weights
self.m = layer_sizes[-1];
self.loss = np.inf
self.bfgs_iter = bfgs_iter;
self.debug = debug
self.l1 = l1; # TODO: only regularize weight, do not regularize bias
self.l2 = l2;
self.train_y.reshape(1, train_y.size)
self.train_y_zero = self.train_y - self.mean;
def rand_theta(self, scale=0.1):
"""
Generate an initial theta, the weights of NN are randomly initialized
"""
theta = scale * np.random.randn(self.num_param)
theta[0] = np.log(np.std(self.train_y) / 2)
theta[1] = np.log(np.std(self.train_y))
for i in range(self.dim):
theta[2 * + i] = np.maximum(-100, np.log(0.5 * (self.train_x[i, :].max() - self.train_x[i, :].min())))
return theta
def calc_Phi(self, w, x):
Phi = self.nn.predict(w, x);
return Phi
def log_likelihood(self, theta):
# TODO: verification of this log_likelihood
log_sn = theta[0]
log_sp = theta[1]
log_lscales = theta[2:2+self.dim];
w = theta[2+self.dim:]
scaled_x = scale_x(self.train_x, log_lscales)
sn2 = np.exp(2 * log_sn)
sp = np.exp(1 * log_sp);
sp2 = np.exp(2 * log_sp);
neg_likelihood = np.inf
Phi = self.calc_Phi(w, scaled_x);
m, num_train = Phi.shape
A = np.dot(Phi, Phi.T) + (sn2 * m / sp2) * np.eye(m);
LA = np.linalg.cholesky(A)
Phi_y = np.dot(Phi, self.train_y_zero.T)
data_fit = (np.dot(self.train_y_zero, self.train_y_zero.T) - np.dot(Phi_y.T, chol_solve(LA, Phi_y))) / sn2
logDetA = 0
for i in range(m):
logDetA += 2 * np.log(LA[i][i])
neg_likelihood = 0.5 * (data_fit + logDetA - m * np.log(m * sn2 / sp2) + num_train * np.log(2 * np.pi * sn2))
if(np.isnan(neg_likelihood)):
neg_likelihood = np.inf
w_nobias = self.nn.w_nobias(w, self.dim);
l1_reg = self.l1 * np.abs(w_nobias).sum()
l2_reg = self.l2 * np.dot(w_nobias, w_nobias)
neg_likelihood = neg_likelihood + l1_reg + l2_reg
# refresh current best
if neg_likelihood < self.loss:
self.loss = neg_likelihood
self.theta = np.copy(theta)
self.LA = LA.copy()
self.A = A.copy()
return neg_likelihood
def fit(self, theta):
theta0 = theta.copy()
self.loss = np.inf
self.theta = theta0;
def loss(w):
nlz = self.log_likelihood(w);
return nlz
gloss = grad(loss)
try:
fmin_l_bfgs_b(loss, theta0, gloss, maxiter = self.bfgs_iter, m = 100, iprint=1)
except np.linalg.LinAlgError:
print("Increase noise term and re-optimization")
theta0 = np.copy(self.theta);
theta0[0] += np.log(10);
try:
fmin_l_bfgs_b(loss, theta0, gloss, maxiter = self.bfgs_iter, m = 10, iprint=1)
except:
print("Exception caught, L-BFGS early stopping...")
if self.debug:
print(traceback.format_exc())
except:
print("Exception caught, L-BFGS early stopping...")
if self.debug:
print(traceback.format_exc())
print("Optimized loss is %g" % self.loss)
if(np.isinf(self.loss) or np.isnan(self.loss)):
print("Fail to build GP model")
sys.exit(1)
# pre-computation
log_sn = self.theta[0]
log_sp = self.theta[1]
log_lscales = self.theta[2:2+self.dim]
w = self.theta[2+self.dim:]
sn2 = np.exp(2 * log_sn)
sp = np.exp(log_sp);
sp2 = np.exp(2*log_sp);
Phi = self.calc_Phi(w, scale_x(self.train_x, log_lscales))
m = self.m
self.alpha = chol_solve(self.LA, np.dot(Phi, self.train_y_zero.T))
def predict(self, test_x):
log_sn = self.theta[0]
log_sp = self.theta[1]
log_lscales = self.theta[2:2+self.dim]
w = self.theta[2+self.dim:]
sn = np.exp(log_sn)
sn2 = np.exp(2*log_sn)
sp = np.exp(log_sp)
sp2 = np.exp(2*log_sp)
Phi_test = self.calc_Phi(w, scale_x(test_x, log_lscales))
py = self.mean + Phi_test.T.dot(self.alpha)
ps2 = sn2 + sn2 * np.diagonal(Phi_test.T.dot(chol_solve(self.LA, Phi_test)));
return py, ps2
class MODSK:
def __init__(self, train_x, train_y, shared_nn, non_shared_nns, max_iter = 100, l1 = 0, l2 = 0, debug=False):
self.train_x = np.copy(train_x)
self.train_y = np.copy(train_y)
self.dim = self.train_x.shape[0]
self.num_train = self.train_x.shape[1]
self.num_obj = self.train_y.shape[1]
self.means = np.mean(self.train_y, axis=0)
self.stds = np.std(self.train_y, axis=0)
self.train_y = (self.train_y - self.means) / self.stds # standardize output
self.debug = debug
self.max_iter = max_iter # max iter for the L-BFGS optimization
self.l1 = l1
self.l2 = l2
self.shared_nn = shared_nn
self.non_shared_nns = non_shared_nns
self.num_param = self.calc_num_params()
if(train_x.ndim != 2 or train_y.ndim != 2):
print("train_x.ndim != 2 or train_y.ndim != 2")
sys.exit(1)
if(train_x.shape[1] != train_y.shape[0]):
print("train_x.shape[1] != train_y.shape[0]")
sys.exit(1)
if(len(non_shared_nns) != self.num_obj):
print("len(non_shared_nns) != self.num_obj")
sys.exit(1)
def calc_num_params(self):
"""
parameters:
1. length scales: dim
2. noise: num_obj
3. self covariance: num_obj
"""
num_param = self.dim + 2 * self.num_obj + self.shared_nn.num_param(self.dim)
size_last_layer_shared = self.shared_nn.layer_sizes[-1]
for i in range(self.num_obj):
num_param += self.non_shared_nns[i].num_param(size_last_layer_shared)
return num_param
def w_nobias(self, ws):
w_shared = ws[:self.shared_nn.num_param(self.dim)]
w_non_shared = ws[self.shared_nn.num_param(self.dim):]
m_shared = self.shared_nn.layer_sizes[-1]
wnb = self.shared_nn.w_nobias(w_shared, self.dim)
start_idx = 0
for nn in self.non_shared_nns:
w_tmp = w_non_shared[start_idx: start_idx + nn.num_param(m_shared)]
wnb = np.concatenate((wnb, nn.w_nobias(w_tmp, m_shared)))
start_idx = start_idx + w_tmp.size
if self.debug:
assert(w_tmp.size == nn.num_param(m_shared))
return wnb
def calc_Phi(self, ws, x):
w_shared = ws[:self.shared_nn.num_param(self.dim)]
w_non_shared = ws[self.shared_nn.num_param(self.dim):]
Phi_shared = self.shared_nn.predict(w_shared, x)
m_shared = Phi_shared.shape[0]
Phis = []
start_idx = 0
for nn in self.non_shared_nns:
w_tmp = w_non_shared[start_idx: start_idx + nn.num_param(m_shared)]
Phi_tmp = nn.predict(w_tmp, Phi_shared)
start_idx = start_idx + w_tmp.size
Phis += [Phi_tmp]
if self.debug:
assert(w_tmp.size == nn.num_param(Phi_shared.shape[0]))
return Phis
def split_theta(self, theta):
if self.debug:
assert(theta.size == self.num_param)
num_obj = self.num_obj
log_sns = theta[:num_obj];
log_sps = theta[num_obj:2*num_obj];
log_lscales = theta[2*num_obj:2*num_obj+self.dim]
ws = theta[2*num_obj+self.dim:]
return (log_sns, log_sps, log_lscales, ws)
def rand_theta(self, scale=1):
"""
Generate an initial theta, the weights of NN are randomly initialized
"""
theta = scale * np.random.randn(self.num_param)
# noises and self covariances
for i in range(self.num_obj):
theta[i] = np.log(np.std(self.train_y[:, i]) / 2)
theta[self.num_obj + i] = np.log(np.std(self.train_y[:, i]))
# lengthscales
for i in range(self.dim):
theta[2 * self.num_obj + i] = np.maximum(-100, np.log(0.5 * (self.train_x[i, :].max() - self.train_x[i, :].min())))
return theta
def loss(self, theta):
"""
return a list of losses
"""
if self.debug:
assert(theta.size == self.num_param)
log_sns, log_sps, log_lscales, ws = self.split_theta(theta)
Phis = self.calc_Phi(ws, scale_x(self.train_x, log_lscales))
losses = []
for i in range(self.num_obj):
losses += [self.log_likelihood(log_sns[i], log_sps[i], Phis[i], self.train_y[:, i].reshape(self.num_train, 1))]
return losses
def log_likelihood(self, log_sn, log_sp, Phi, train_y):
sn2 = np.exp(2 * log_sn)
sp = np.exp(1 * log_sp);
sp2 = np.exp(2 * log_sp);
neg_likelihood = np.inf
m, num_train = Phi.shape
A = np.dot(Phi, Phi.T) + (sn2 * m / sp2) * np.eye(m);
LA = np.linalg.cholesky(A)
Phi_y = np.dot(Phi, train_y)
data_fit = (np.dot(train_y.T, train_y) - np.dot(Phi_y.T, chol_solve(LA, Phi_y))) / sn2
logDetA = 0
for i in range(m):
logDetA += 2 * np.log(LA[i][i])
neg_likelihood = 0.5 * (data_fit + logDetA - m * np.log(m * sn2 / sp2) + num_train * np.log(2 * np.pi * sn2))
if(np.isnan(neg_likelihood)):
neg_likelihood = np.inf
return neg_likelihood
def fit(self, theta):
theta0 = theta.copy()
self.best_loss = np.inf
def lossfit(theta):
loss = sum(self.loss(theta))
w = theta[2*self.num_obj+self.dim:]
wnb = self.w_nobias(w)
l1_reg = self.l1 * np.abs(wnb).sum();
l2_reg = self.l2 * np.dot(wnb, wnb)
loss = loss + l1_reg + l2_reg
if loss < self.best_loss:
self.best_loss = loss
self.theta = theta.copy()
return loss
gloss = grad(lossfit)
try:
fmin_l_bfgs_b(lossfit, theta0, gloss, maxiter = self.max_iter, m = 100, iprint=1)
except np.linalg.LinAlgError:
print("Increase noise term and re-optimization")
theta0 = np.copy(self.theta)
for i in range(self.num_obj):
theta0[i] = theta0[i] + np.log(10)
try:
fmin_l_bfgs_b(lossfit, theta0, gloss, maxiter = self.max_iter, m = 10, iprint=1)
except:
print("Exception caught, L-BFGS early stopping...")
if self.debug:
print(traceback.format_exc())
except:
print("Exception caught, L-BFGS early stopping...")
if self.debug:
print(traceback.format_exc())
print("Optimized")
log_sns, log_sps, log_lscales, ws = self.split_theta(self.theta)
scaled_x = scale_x(self.train_x, log_lscales)
Phis = self.calc_Phi(ws, scaled_x)
self.Phis = Phis
self.LAs = []
self.alphas = []
for i in range(self.num_obj):
Phi = Phis[i]
sn2 = np.exp(2 * log_sns[i])
sp2 = np.exp(2 * log_sps[i])
m = Phi.shape[0]
A = np.dot(Phi, Phi.T) + (sn2 * m / sp2) * np.eye(m);
LA = np.linalg.cholesky(A)
self.LAs += [LA]
self.alphas += [chol_solve(LA, np.dot(Phi, self.train_y[:, i]))]
def predict(self, x):
num_test = x.shape[1];
py = np.zeros((num_test, self.num_obj))
ps2 = np.zeros((num_test, self.num_obj))
log_sns, log_sps, log_lscales, ws = self.split_theta(self.theta)
scaled_x = scale_x(x, log_lscales)
Phis_test = self.calc_Phi(ws, scaled_x)
for i in range(self.num_obj):
Phi_test = Phis_test[i]
sn2 = np.exp(2 * log_sns[i])
py[:, i] = np.dot(Phi_test.T, self.alphas[i]);
for j in range(num_test):
ps2[j, i] = sn2 + sn2 * np.dot(Phi_test[:, j].T, chol_solve(self.LAs[i], Phi_test[:, j]))
py = (py * self.stds) + self.means;
ps2 = ps2 * (self.stds**2)
return py, ps2
def mix_predict(self, K, x, scale):
# TODO: this version can not be paralleled, as different threads would share the same self.theta
pys = []
ps2s = []
losses = []
for i in range(K):
theta = self.rand_theta(scale=scale)
self.fit(theta)
py_i, ps2_i = self.predict(x)
pys += [py_i]
ps2s += [ps2_i]
losses += [self.best_loss[0][0]]
py = np.zeros((x.shape[1], self.num_obj))
ps2 = np.zeros((x.shape[1], self.num_obj))
for i in range(K):
py += pys[i] / K;
ps2 += (ps2s[i] + pys[i]**2) / K
ps2 -= py**2
print("losses:")
print(losses)
return py, ps2
# TODO: # https://towardsdatascience.com/random-initialization-for-neural-networks-a-thing-of-the-past-bfcdd806bf9e