-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSesion5.R
43 lines (41 loc) · 1.51 KB
/
Sesion5.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
local({
.Table <- data.frame(Probability=dbinom(0:10, size=10, prob=0.5))
rownames(.Table) <- 0:10
print(.Table)
})
local({
.Table <- data.frame(Probability=dbinom(0:10, size=10, prob=0.2))
rownames(.Table) <- 0:10
print(.Table)
})
BinomialSamples <- as.data.frame(matrix(rbinom(1*5, size=10, prob=0.5), ncol=5))
rownames(BinomialSamples) <- "sample"
colnames(BinomialSamples) <- paste("obs", 1:5, sep="")
#seleccionar BinomialSamples para ver el resultado
BinomialSamples <- within(BinomialSamples, {
mean <- rowMeans(BinomialSamples[,1:5])
sum <- rowSums(BinomialSamples[,1:5])
sd <- apply(BinomialSamples[,1:5], 1, sd)
})
BinomialSamples <- as.data.frame(matrix(rbinom(1*100, size=10, prob=0.5), ncol=100))
rownames(BinomialSamples) <- "sample"
colnames(BinomialSamples) <- paste("obs", 1:100, sep="")
BinomialSamples <- within(BinomialSamples, {
mean <- rowMeans(BinomialSamples[,1:100])
sum <- rowSums(BinomialSamples[,1:100])
sd <- apply(BinomialSamples[,1:100], 1, sd)
})
pbinom(c(2,5,9), size=10, prob=0.2, lower.tail=TRUE)
pbinom(c(2,3,4,5,9), size=10, prob=0.2, lower.tail=TRUE)
qbinom(c(0.2,0.5,0.6,0.75,0.8), size=10, prob=0.2, lower.tail=TRUE)
local({
.x <- 0:7
plotDistr(.x, dbinom(.x, size=10, prob=0.2), xlab="Number of Successes", ylab="Probability Mass",
main="Binomial Distribution: Binomial trials=10, Probability of success=0.2", discrete=TRUE)
})
local({
.Table <- data.frame(Probability=dpois(0:10, lambda=3))
rownames(.Table) <- 0:10
print(.Table)
})
sum(dpois(0:10, lambda=3))