Skip to content

Releases: Ahoo-Wang/CosId

1.3.9

03 Aug 14:48
Compare
Choose a tag to compare
  • add CosIdAnnotationSupport
public class Entity {

    @CosId
    private long id;

    @CosId
    private String stringId;

    public long getId() {
        return id;
    }

    public void setId(long id) {
        this.id = id;
    }

    public String getStringId() {
        return stringId;
    }

    public void setStringId(String stringId) {
        this.stringId = stringId;
    }

}
        Entity entity=new Entity();
        cosIdAnnotationSupport.ensureId(entity);
        Assertions.assertEquals(1,entity.getId());
        Assertions.assertEquals("2",entity.getStringId());

1.3.8

03 Aug 13:32
Compare
Choose a tag to compare
  • Add CosIdPlugin(cosid-mybatis) to support automatic injection of distributed IDs through annotations
@Target({ElementType.FIELD})
@Documented
@Retention(RetentionPolicy.RUNTIME)
public @interface CosId {
    String value() default IdGeneratorProvider.SHARE;

    boolean friendlyId() default false;
}
public class Order {

    @CosId
    private long id;

    @CosId
    private String stringId;

    @CosId(friendlyId = true)
    private String friendlyId;

    @CosId(value = "bizC")
    private long bizId;

    /**
     * ...
     * getter or setter
     */
}
@Mapper
public interface OrderRepository {
    @Insert("insert into t_order (id,string_id,friendly_id,biz_id) value (#{id},#{stringId},#{friendlyId},#{bizId});")
    void insert(Order order);

    @Insert({
            "<script>",
            "insert into t_order (id,string_id,friendly_id,biz_id)",
            "VALUES" +
                    "<foreach item='item' collection='list' open='' separator=',' close=''>" +
                    "(#{item.id},#{item.stringId},#{item.friendlyId},#{item.bizId})" +
                    "</foreach>",
            "</script>"})
    void insertList(List<Order> orderList);
}
        Order order=new Order();
        orderRepository.insert(order);
        /**
         * {
         *   "id": 213044050087903230,
         *   "stringId": "213044050087903233",
         *   "friendlyId": "20210803212059708-0-2",
         *   "bizId": 28801
         * }
         */
        return order;

1.3.6

02 Aug 13:18
Compare
Choose a tag to compare
  • Fix the issue of throwing exception when redis is lower than 5.0 version.(Verified redis version:3.*,4.*,5.*,6.*)
    Call redis.replicate_commands() at the start of your script in order to switch to single commands replication mode.

1.3.5

30 Jul 04:58
Compare
Choose a tag to compare
  • dependency update : CoSky -> 1.2.8
  • refactor: Modify the module name: spring-boot-starter-cosid -> cosid-spring-boot-starter (Comply with spring-boot-starter external project naming convention) .thx @fxbin #5 #6

1.3.4

29 Jul 13:12
Compare
Choose a tag to compare
  • add wiki
  • add default extension method IdGenerator.generateAsString
  • update README.zh-CN

CosId 通用、灵活、高性能的分布式ID生成器

English Document

简介

CosId 旨在提供通用、灵活、高性能的分布式 ID 生成器。 目前提供了俩类 ID 生成器:

  • SnowflakeId : 单机 TPS 性能:409W/s JMH 基准测试 , 主要解决 时钟回拨问题机器号分配问题 并且提供更加友好、灵活的使用体验。
  • SegmentId: 每次获取一段 (Step) ID,来降低号段分发器的网络IO请求频次提升性能。
    • IdSegmentDistributor: 号段分发器(号段存储器)
      • RedisIdSegmentDistributor: 基于 Redis 的号段分发器。
      • JdbcIdSegmentDistributor: 基于 Jdbc 的号段分发器,支持各种关系型数据库。
    • SegmentChainId(推荐):SegmentChainId (lock-free) 是对 SegmentId 的增强。性能可达到近似 AtomicLongTPS 性能:12743W+/s JMH 基准测试
      • PrefetchWorker 维护安全距离(safeDistance), 并且支持基于饥饿状态的动态safeDistance扩容/收缩。

背景(为什么需要分布式ID

在软件系统演进过程中,随着业务规模的增长,我们需要进行集群化部署来分摊计算、存储压力,应用服务我们可以很轻松做到无状态、弹性伸缩。
但是仅仅增加服务副本数就够了吗?显然不够,因为性能瓶颈往往是在数据库层面,那么这个时候我们就需要考虑如何进行数据库的扩容、伸缩、集群化,通常使用分库、分表的方式来处理。
那么我如何分片(水平分片,当然还有垂直分片不过不是本文需要讨论的内容)呢,分片得前提是我们得先有一个ID,然后才能根据分片算法来分片。(比如比较简单常用的ID取模分片算法,这个跟Hash算法的概念类似,我们得先有key才能进行Hash取得插入槽位。)

当然还有很多分布式场景需要分布式ID,这里不再一一列举。

分布式ID方案的核心指标

  • 全局(相同业务)唯一性:唯一性保证是ID的必要条件,假设ID不唯一就会产生主键冲突,这点很容易可以理解。
    • 通常所说的全局唯一性并不是指所有业务服务都要唯一,而是相同业务服务不同部署副本唯一。
      比如 Order 服务的多个部署副本在生成t_order这张表的Id时是要求全局唯一的。至于t_order_item生成的IDt_order是否唯一,并不影响唯一性约束,也不会产生什么副作用。
      不同业务模块间也是同理。即唯一性主要解决的是ID冲突问题。
  • 有序性:有序性保证是面向查询的数据结构算法(除了Hash算法)所必须的,是二分查找法(分而治之)的前提。
    • MySq-InnoDB B+树是使用最为广泛的,假设 Id 是无序的,B+ 树 为了维护 ID 的有序性,就会频繁的在索引的中间位置插入而挪动后面节点的位置,甚至导致频繁的页分裂,这对于性能的影响是极大的。那么如果我们能够保证ID的有序性这种情况就完全不同了,只需要进行追加写操作。所以 ID 的有序性是非常重要的,也是ID设计不可避免的特性。
  • 吞吐量/性能(ops/time):即单位时间(每秒)能产生的ID数量。生成ID是非常高频的操作,也是最为基本的。假设ID生成的性能缓慢,那么不管怎么进行系统优化也无法获得更好的性能。
    • 一般我们会首先生成ID,然后再执行写入操作,假设ID生成缓慢,那么整体性能上限就会受到限制,这一点应该不难理解。
  • 稳定性(time/op):稳定性指标一般可以采用每个操作的时间进行百分位采样来分析,比如 CosId 百分位采样 P9999=0.208 us/op,即 0% ~ 99.99% 的单位操作时间小于等于 0.208 us/op
    • 百分位数 WIKI :统计学术语,若将一组数据从小到大排序,并计算相应的累计百分点,则某百分点所对应数据的值,就称为这百分点的百分位数,以Pk表示第k百分位数。百分位数是用来比较个体在群体中的相对地位量数。
    • 为什么不用平均每个操作的时间:马老师的身价跟你的身价能平均么?平均后的值有意义不?
    • 可以使用最小每个操作的时间、最大每个操作的时间作为参考吗?因为最小、最大值只说明了零界点的情况,虽说可以作为稳定性的参考,但依然不够全面。而且百分位数已经覆盖了这俩个指标。
  • 自治性(依赖):主要是指对外部环境有无依赖,比如号段模式会强依赖第三方存储中间件来获取NexMaxId。自治性还会对可用性造成影响。
  • 可用性:分布式ID的可用性主要会受到自治性影响,比如SnowflakeId会受到时钟回拨影响,导致处于短暂时间的不可用状态。而号段模式会受到第三方发号器(NexMaxId)的可用性影响。
    • 可用性 WIKI :在一个给定的时间间隔内,对于一个功能个体来讲,总的可用时间所占的比例。
    • MTBF:平均故障间隔
    • MDT:平均修复/恢复时间
    • Availability=MTBF/(MTBF+MDT)
    • 假设MTBF为1年,MDT为1小时,即Availability=(365*24)/(365*24+1)=0.999885857778792≈99.99%,也就是我们通常所说对可用性4个9。
  • 适应性:是指在面对外部环境变化的自适应能力,这里我们主要说的是面对流量突发时动态伸缩分布式ID的性能,
    • SegmentChainId可以基于饥饿状态进行安全距离的动态伸缩。
    • SnowflakeId常规位分配方案性能恒定409.6W,虽然可以通过调整位分配方案来获得不同的TPS性能,但是位分配方法的变更是破坏性的,一般根据业务场景确定位分配方案后不再变更。
  • 存储空间:还是用MySq-InnoDB B+树来举例,普通索引(二级索引)会存储主键值,主键越大占用的内存缓存、磁盘空间也会越大。Page页存储的数据越少,磁盘IO访问的次数会增加。总之在满足业务需求的情况下,尽可能小的存储空间占用在绝大多数场景下都是好的设计原则。

不同分布式ID方案核心指标对比

分布式ID 全局唯一性 有序性 吞吐量 稳定性(1s=1000,000us) 自治性 可用性 适应性 存储空间
UUID/GUID 完全无序 3078638(ops/s) P9999=0.325(us/op) 完全自治 100% 128-bit
SnowflakeId 本地单调递增,全局趋势递增(受全局时钟影响) 4096000(ops/s) P9999=0.244(us/op) 依赖时钟 时钟回拨会导致短暂不可用 64-bit
SegmentId 本地单调递增,全局趋势递增(受Step影响) 29506073(ops/s) P9999=46.624(us/op) 依赖第三方号段分发器 受号段分发器可用性影响 64-bit
SegmentChainId 本地单调递增,全局趋势递增(受Step、安全距离影响) 127439148(ops/s) P9999=0.208(us/op) 依赖第三方号段分发器 受号段分发器可用性影响,但因安全距离存在,预留ID段,所以高于SegmentId 64-bit

有序性(要想分而治之·分查找法,必须要维护我)

刚刚我们已经讨论了ID有序性的重要性,所以我们设计ID算法时应该尽可能地让ID是单调递增的,比如像表的自增主键那样。但是很遗憾,因全局时钟、性能等分布式系统问题,我们通常只能选择局部单调递增、全局趋势递增的组合(就像我们在分布式系统中不得不的选择最终一致性那样)以获得多方面的权衡。下面我们来看一下什么是单调递增与趋势递增。

有序性之单调递增

单调递增

单调递增:T表示全局绝对时点,假设有Tn+1>Tn(绝对时间总是往前进的,这里不考虑相对论、时间机器等),那么必然有F(Tn+1)>F(Tn),数据库自增主键就属于这一类。
另外需要特别说明的是单调递增跟连续性递增是不同的概念。 连续性递增:F(n+1)=(F(n)+step)即下一次获取的ID一定等于当前ID+Step,当Step=1时类似于这样一个序列:1->2->3->4->5

扩展小知识:数据库的自增主键也不是连续性递增的,相信你一定遇到过这种情况,请思考一下数据库为什么这样设计?

有序性之趋势递增

趋势递增

趋势递增:Tn>Tn-s,那么大概率有F(Tn)>F(Tn-s)。虽然在一段时间间隔内有乱序,但是整体趋势是递增。从上图上看,是有上升趋势的(趋势线)。

  • SnowflakeIdn-s受到全局时钟同步影响。
  • 在号段模式(SegmentId)中n-s受到号段可用区间(Step)影响。

分布式ID分配方案

UUID/GUID

  • 👍不依赖任何第三方中间件
  • 👍性能高
  • 👎完全无序
  • 👎空间占用大,需要占用128位存储空间。

UUID最大的缺陷是随机的、无序的,当用于主键时会导致数据库的主键索引效率低下(为了维护索引树,频繁的索引中间位置插入数据,而不是追加写)。这也是UUID不适用于数据库主键的最为重要的原因。

SnowflakeId

Snowflake

SnowflakeId使用Long(64-bit)位分区来生成ID的一种分布式ID算法。
通用的位分配方案为:timestamp(41-bit)+machineId(10-bit)+sequence(12-bit)=63-bit。

  • 41-bittimestamp=(1L<<41)/(1000/3600/365),约可以存储69年的时间戳,即可以使用的绝对时间为EPOCH+69年,一般我们需要自定义EPOCH为产品开发时间,另外还可以通过压缩其他区域的分配位数,来增加时间戳位数来延长可用时间。
  • 10-bitmachineId=(1L<<10)=1024,即相同业务可以部署1024个副本(在Kubernetes概念里没有主从副本之分,这里直接沿用Kubernetes的定义)。一般情况下没有必要使用这么多位,所以会根据部署规模需要重新定义。
  • 12-bitsequence=(1L<<12)*1000=4096000,即单机每秒可生成约409W的ID,全局同业务集群可产生4096000*1024=419430W=41.9亿(TPS)

SnowflakeId 设计上可以看出:

  • 👍timestamp在高位,单实例SnowflakeId是会保证时钟总是向前的(校验本机时钟回拨),所以是本机单调递增的。受全局时钟同步/时钟回拨影响SnowflakeId是全局趋势递增的。
  • 👍SnowflakeId不对任何第三方中间件有强依赖关系,并且性能也非常高。
  • 👍位分配方案可以按照业务系统需要灵活配置,来达到最优使用效果。
  • 👎强依赖本机时钟,潜在的时钟回拨问题会导致ID重复、处于短暂的不可用状态。
  • 👎machineId需要手动设置,实际部署时如果采用手动分配machineId,会非常低效。

SnowflakeId之机器号分配问题

SnowflakeId中根据业务设计的位分配方案确定了基本上就不再有变更了,也很少需要维护。但是machineId总是需要配置的,而且集群中是不能重复的,否则分区原则就会被破坏而导致ID唯一性原则破坏,当集群规模较大时machineId的维护工作是非常繁琐,低效的。

有一点需要特别说明的,SnowflakeIdMachineId是逻辑上的概念,而不是物理概念。
想象一下假设MachineId是物理上的,那么意味着一台机器拥有只能拥有一个MachineId,那会产生什么问题呢?

目前 CosId 提供了以下三种 MachineId 分配器。

  • ManualMachineIdDistributor: 手动配置machineId,一般只有在集群规模非常小的时候才有可能使用,不推荐。
  • StatefulSetMachineIdDistributor: 使用KubernetesStatefulSet提供的稳定的标识ID(HOSTNAME=service-01)作为机器号。
  • RedisMachineIdDistributor: 使用Redis作为机器号的分发存储,同时还会存储MachineId的上一次时间戳,用于启动时时钟回拨的检查。

RedisMachineIdDistributor

SnowflakeId之时钟回拨问题

时钟回拨的致命问题是会导致ID重复、冲突(这一点不难理解),ID重复显然是不能被容忍的。
SnowflakeId算法中,按照MachineId分区ID,我们不难理解的是不同MachineId是不可能产生相同ID的。所以我们解决的时钟回拨问题是指当前MachineId的时钟回拨问题,而不是所有集群节点的时钟回拨问题。

MachineId时钟回拨问题大体可以分为俩种情况:

  • 运行时时钟回拨:即在运行时获取的当前时间戳比上一次获取的时间戳小。这个场景的时钟回拨是很容易处理的,一般SnowflakeId代码实现时都会存储lastTimestamp用于运行时时钟回拨的检查,并抛出时钟回拨异常。
    • 时钟回拨时直接抛出异常是不太好地实践,因为下游使用方几乎没有其他处理方案(噢,我还能怎么办呢,等吧),时钟同步是唯一的选择,当只有一种选择时就不要再让用户选择了。
    • ClockSyncSnowflakeIdSnowflakeId的包装器,当发生时钟回拨时会使用ClockBackwardsSynchronizer主动等待时钟同步来重新生成ID,提供更加友好的使用体验。
  • 启动时时钟回拨:即在启动服务实例时获取的当前时钟比上次关闭服务时小。此时的lastTimestamp是无法存储在进程内存中的。当获取的外部存储的机器状态大于当前时钟时钟时,会使用ClockBackwardsSynchronizer主动同步时钟。
    • LocalMachineStateStorage:使用本地文件存储MachineState(机器号、最近一次时间戳)。因为使用的是本地文件所以只有当实例的部署环境是稳定的,LocalMachineStateStorage才适用。
    • RedisMachineIdDistributor:将MachineState存储在Redis分布式缓存中,这样可以保证总是可以获取到上次服务实例停机时机器状态

SnowflakeId之JavaScript数值溢出问题

JavaScriptNumber.MAX_SAFE_INTEGER只有53-bit,如果直接将63位的SnowflakeId返回给前端,那么会产生值溢出的情况(所以这里我们应该知道后端传给前端的long值溢出问题,迟早会出现,只不过SnowflakeId出现得更快而已)。
很显然溢出是不能被接受的,一般可以使用以下俩种处理方案:

  • 将生成的63-bitSnowflakeId转换为String类型。
    • 直接将long转换成String
    • 使用SnowflakeFriendlyIdSnowflakeId转换成比较友好的字符串表示:{timestamp}-{machineId}-{sequence} -> 20210623131730192-1-0
  • 自定义SnowflakeId位分配来缩短SnowflakeId的位数(53-bit)使 ID 提供给前端时不溢出
    • 使用SafeJavaScriptSnowflakeId(JavaScript 安全的 SnowflakeId)

号段模式(SegmentId)

SegmentId

从上面的设计图中,不难看出号段模式基本设计思路是通过每次获取一定长度(Step)的可用ID(Id段/号段),来降低网络IO请求次数,提升性能。

  • 👎强依赖第三方号段分发器,可用性受到第三方分发器影响。
  • 👎每次号段用完时获取NextMaxId需要进行网络IO请求,此时的性能会比较低。
  • 单实例ID单调递增,全局趋势递增。
    • 从设计图中不难看出Instance 1每次获取的NextMaxId,一定比上一次大,意味着下一次的号段一定比上一次大,所以从单实例上来看是单调递增的。
    • 多实例各自持有的不同的号段,意味着同一时刻不同实例生成的ID是乱序的,但是整体趋势的递增的,所以全局趋势递增。
  • ID乱序程度受到Step长度以及集群规模影响(从趋势递增图中不难看出)。
    • 假设集群中只有一个实例时号段模式就是单调递增的。
    • Step越小,乱序程度越小。当Step=1时,将无限接近单调递增。需要注意的是这里是无限接近而非等于单调递增,具体原因你可以思考一下这样一个场景:
      • 号段分发器T1时刻给Instance 1分发了ID=1,T2时刻给Instance 2分发了ID=2。因为机器性能、网络等原因,Instance 2网络IO写请求先于Instance 1到达。那么这个时候对于数据库来说,ID依然是乱序的。

号段链模式(SegmentChainId)

SegmentChainId

SegmentChainIdSegmentId增强版,相比于SegmentId有以下优势:

  • 稳定性:SegmentId的稳定性问题(P9999=46.624(us/op))主要是因为号段用完之后同步进行NextMaxId的获取导致的(会产生网络IO)。
    • SegmentChainId (P9999=0.208(us/op))引入了新的角色PrefetchWorker用以维护和保证安全距离,理想情况下使得获取ID的线程几乎完全不需要进行同步的等待NextMaxId获取,性能可达到近似 AtomicLongTPS 性能:12743W+/s JMH 基准测试
  • 适应性:从SegmentId介绍中我们知道了影响ID乱序的因素有俩个:集群规模、Step大小。集群规模是我们不能控制的,但是Step是可以调节的。
    • Step应该近可能小才能使得ID单调递增的可能性增大。
      ...
Read more

1.3.3

22 Jul 14:15
Compare
Choose a tag to compare
  • enhancement: add defensive parameter check to enhance robustness.
  • add: uuid_generate jmh-test

1.3.2

16 Jul 17:39
Compare
Choose a tag to compare
  • add MergedIdSegment to reduce the number of IdSegment creations.
  • add PrefetchWorkerExecutorService to improve thread utilization of PrefetchWorker.
  • optimize performance, use CacheClock to replace System#currentTimeMillis(too slow!)  implementation .
  • enhance: Numerical overflow check
  • optimize the calculation of safety distance

  • 增强:新增 MergedIdSegment 合并 IdSegment 避免创建过多 IdSegment 对象。
  • 增强:新增 亲和性预取线程池 PrefetchWorkerExecutorService(PrefetchWorker 1:n PrefetchJob),提升 PrefetchWorker 利用率,防止因申明过多 SegmentChainId 导致的创建过多线程的问题(PrefetchWorker 1:1 PrefetchJob)。
  • 增强:使用 CacheClock 替换 System.currentTimeMillis提升获取当前时钟性能。
    • System.currentTimeMillis: 太慢了,TPS只有7191W+/s,低于 SegmentChainId 能达到的峰值12743W+/s,当开启IdSegmentttl功能时会影响SegmentChainId峰值性能。
    • CacheClock: TPS 41765W+/s ,精度1秒,应用需要容忍潜在的1秒精度延迟可能性,在 TTL 检查的场景中完全适用。
  • 增强:数值计算溢出检查。
  • 增强:优化安全间隙(safeGap)计算逻辑

1.3.1

12 Jul 14:52
Compare
Choose a tag to compare
  • add cosid-spring-redis support spring-data-redis
  • fix IdSegmentChain performs two prefetch operations when it is first started
  • fix the issue of PrefetchWorker log information output wrong

1.2.8

10 Jul 09:20
Compare
Choose a tag to compare
  • add support IdSegment time to live(default IdSegment#TIME_TO_LIVE_FOREVER)

1.2.5

09 Jul 16:45
Compare
Choose a tag to compare
  • PrefetchWorker supports dynamic expansion and contraction based on hungerThreshold
  • add cosid-jdbc for support JdbcIdSegmentDistributor(database segment storage)
  • change  SegmentId default SegmentIdProperties.Mode to CHAIN (recommend)
  • change example -> rest-api