-
Origin Repo:facebookresearch/deit
-
Code:cait.py
-
Evaluate Transforms:
# backend: pil # input_size: 224x224 transforms = T.Compose([ T.Resize(248, interpolation='bicubic'), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # backend: pil # input_size: 384x384 transforms = T.Compose([ T.Resize(384, interpolation='bicubic'), T.CenterCrop(384), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # backend: pil # input_size: 448x448 transforms = T.Compose([ T.Resize(448, interpolation='bicubic'), T.CenterCrop(448), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
-
Model Details:
Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model CaiT-xxs-24 cait_xxs_24 12.0 2.5 78.50 94.30 Download CaiT-xxs-36 cait_xxs_36 17.3 3.8 79.87 94.90 Download CaiT-s-24 cait_s_24 49.6 9.4 83.40 96.62 Download CaiT-xxs-24-384 cait_xxs_24_384 12.0 9.5 80.97 95.64 Download CaiT-xxs-36-384 cait_xxs_36_384 17.3 14.2 82.20 96.15 Download CaiT-xs-24-384 cait_xs_24_384 26.6 19.3 84.06 96.89 Download CaiT-s-24-384 cait_s_24_384 49.6 32.2 85.05 97.34 Download CaiT-s-36-384 cait_s_36_384 68.2 48.0 85.45 97.48 Download CaiT-m-36-384 cait_m_36_384 270.9 173.3 86.06 97.73 Download CaiT-m-48-448 cait_m_48_448 356.0 329.6 86.49 97.75 Download
-
Citation:
@article{touvron2021cait, title={Going deeper with Image Transformers}, author={Hugo Touvron and Matthieu Cord and Alexandre Sablayrolles and Gabriel Synnaeve and Herv'e J'egou}, journal={arXiv preprint arXiv:2103.17239}, year={2021} }