-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
389 lines (333 loc) · 17.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from typing import Optional, List
import torch
from torch import jit, nn
from torch.nn import functional as F
import torch.distributions
from torch.distributions.normal import Normal
from torch.distributions.transforms import SigmoidTransform, AffineTransform
from torch.distributions.transformed_distribution import TransformedDistribution
import numpy as np
# Wraps the input tuple for a function to process a time x batch x features sequence in batch x features (assumes one output)
def bottle(f, x_tuple):
x_sizes = tuple(map(lambda x: x.size(), x_tuple))
y = f(*map(lambda x: x[0].view(x[1][0] * x[1][1], *x[1][2:]), zip(x_tuple, x_sizes)))
y_size = y.size()
output = y.view(x_sizes[0][0], x_sizes[0][1], *y_size[1:])
return output
class TransitionModel(nn.Module):
__constants__ = ['min_std_dev']
def __init__(self, belief_size, state_size, action_size, hidden_size, embedding_size, activation_function='relu', min_std_dev=0.1):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.min_std_dev = min_std_dev
self.fc_embed_state_action = nn.Linear(state_size + action_size, belief_size)
self.rnn = nn.GRUCell(belief_size, belief_size)
self.fc_embed_belief_prior = nn.Linear(belief_size, hidden_size)
self.fc_state_prior = nn.Linear(hidden_size, 2 * state_size)
self.fc_embed_belief_posterior = nn.Linear(belief_size + embedding_size, hidden_size)
self.fc_state_posterior = nn.Linear(hidden_size, 2 * state_size)
self.modules = [self.fc_embed_state_action, self.fc_embed_belief_prior, self.fc_state_prior, self.fc_embed_belief_posterior, self.fc_state_posterior]
# Operates over (previous) state, (previous) actions, (previous) belief, (previous) nonterminals (mask), and (current) observations
# Diagram of expected inputs and outputs for T = 5 (-x- signifying beginning of output belief/state that gets sliced off):
# t : 0 1 2 3 4 5
# o : -X--X--X--X--X-
# a : -X--X--X--X--X-
# n : -X--X--X--X--X-
# pb: -X-
# ps: -X-
# b : -x--X--X--X--X--X-
# s : -x--X--X--X--X--X-
# @jit.script_method
def forward(self, prev_state:torch.Tensor, actions:torch.Tensor, prev_belief:torch.Tensor, observations:Optional[torch.Tensor]=None, nonterminals:Optional[torch.Tensor]=None) -> List[torch.Tensor]:
'''
Input: init_belief, init_state: torch.Size([50, 200]) torch.Size([50, 30])
Output: beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs
torch.Size([49, 50, 200]) torch.Size([49, 50, 30]) torch.Size([49, 50, 30]) torch.Size([49, 50, 30]) torch.Size([49, 50, 30]) torch.Size([49, 50, 30]) torch.Size([49, 50, 30])
'''
# Create lists for hidden states (cannot use single tensor as buffer because autograd won't work with inplace writes)
T = actions.size(0) + 1
beliefs, prior_states, prior_means, prior_std_devs, posterior_states, posterior_means, posterior_std_devs = [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T, [torch.empty(0)] * T
beliefs[0], prior_states[0], posterior_states[0] = prev_belief, prev_state, prev_state
# Loop over time sequence
for t in range(T - 1):
_state = prior_states[t] if observations is None else posterior_states[t] # Select appropriate previous state
_state = _state if (nonterminals is None or t == 0) else _state * nonterminals[t-1].unsqueeze(dim=-1) # Mask if previous transition was terminal # TODO:3
# Compute belief (deterministic hidden state)
hidden = self.act_fn(self.fc_embed_state_action(torch.cat([_state, actions[t]], dim=1)))
beliefs[t + 1] = self.rnn(hidden, beliefs[t])
# Compute state prior by applying transition dynamics
hidden = self.act_fn(self.fc_embed_belief_prior(beliefs[t + 1]))
prior_means[t + 1], _prior_std_dev = torch.chunk(self.fc_state_prior(hidden), 2, dim=1)
prior_std_devs[t + 1] = F.softplus(_prior_std_dev) + self.min_std_dev
prior_states[t + 1] = prior_means[t + 1] + prior_std_devs[t + 1] * torch.randn_like(prior_means[t + 1])
if observations is not None:
# Compute state posterior by applying transition dynamics and using current observation
t_ = t - 1 # Use t_ to deal with different time indexing for observations
hidden = self.act_fn(self.fc_embed_belief_posterior(torch.cat([beliefs[t + 1], observations[t_ + 1]], dim=1)))
posterior_means[t + 1], _posterior_std_dev = torch.chunk(self.fc_state_posterior(hidden), 2, dim=1)
posterior_std_devs[t + 1] = F.softplus(_posterior_std_dev) + self.min_std_dev
posterior_states[t + 1] = posterior_means[t + 1] + posterior_std_devs[t + 1] * torch.randn_like(posterior_means[t + 1])
# Return new hidden states
hidden = [torch.stack(beliefs[1:], dim=0), torch.stack(prior_states[1:], dim=0), torch.stack(prior_means[1:], dim=0), torch.stack(prior_std_devs[1:], dim=0)]
if observations is not None:
hidden += [torch.stack(posterior_states[1:], dim=0), torch.stack(posterior_means[1:], dim=0), torch.stack(posterior_std_devs[1:], dim=0)]
return hidden
class SymbolicObservationModel(jit.ScriptModule):
def __init__(self, observation_size, belief_size, state_size, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(belief_size + state_size, embedding_size)
self.fc2 = nn.Linear(embedding_size, embedding_size)
self.fc3 = nn.Linear(embedding_size, observation_size)
@jit.script_method
def forward(self, belief, state):
hidden = self.act_fn(self.fc1(torch.cat([belief, state], dim=1)))
hidden = self.act_fn(self.fc2(hidden))
observation = self.fc3(hidden)
return observation
class VisualObservationModel(jit.ScriptModule):
__constants__ = ['embedding_size']
def __init__(self, belief_size, state_size, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.embedding_size = embedding_size
self.fc1 = nn.Linear(belief_size + state_size, embedding_size)
self.conv1 = nn.ConvTranspose2d(embedding_size, 128, 3, stride=2)
self.conv2 = nn.ConvTranspose2d(128, 64, 4, stride=2)
self.conv3 = nn.ConvTranspose2d(64, 32, 4, stride=2)
self.conv4 = nn.ConvTranspose2d(32, 1, 6, stride=2)
@jit.script_method
def forward(self, belief, state):
hidden = self.fc1(torch.cat([belief, state], dim=1)) # No nonlinearity here
hidden = hidden.view(-1, self.embedding_size, 1, 1)
hidden = self.act_fn(self.conv1(hidden))
hidden = self.act_fn(self.conv2(hidden))
hidden = self.act_fn(self.conv3(hidden))
observation = self.conv4(hidden)
return observation
def ObservationModel(symbolic, observation_size, belief_size, state_size, embedding_size, activation_function='relu'):
if symbolic:
return SymbolicObservationModel(observation_size, belief_size, state_size, embedding_size, activation_function)
else:
return VisualObservationModel(belief_size, state_size, embedding_size, activation_function)
class SymbolicEncoder(jit.ScriptModule):
def __init__(self, observation_size, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(observation_size, embedding_size)
self.fc2 = nn.Linear(embedding_size, embedding_size)
self.fc3 = nn.Linear(embedding_size, embedding_size)
@jit.script_method
def forward(self, observation):
hidden = self.act_fn(self.fc1(observation))
hidden = self.act_fn(self.fc2(hidden))
hidden = self.fc3(hidden)
return hidden
class VisualEncoder(jit.ScriptModule):
__constants__ = ['embedding_size']
def __init__(self, embedding_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.embedding_size = embedding_size
self.conv1 = nn.Conv2d(1, 32, 4, stride=2)
self.conv2 = nn.Conv2d(32, 64, 3, stride=2)
self.conv3 = nn.Conv2d(64, 128, 3, stride=2)
self.conv4 = nn.Conv2d(128, 256, 3)
self.fc = nn.Identity() if embedding_size == 1024 else nn.Linear(1024, embedding_size)
@jit.script_method
def forward(self, observation):
hidden = self.act_fn(self.conv1(observation))
hidden = self.act_fn(self.conv2(hidden))
hidden = self.act_fn(self.conv3(hidden))
hidden = self.act_fn(self.conv4(hidden))
hidden = hidden.view(-1, 1024)
hidden = self.fc(hidden) # Identity if embedding size is 1024 else linear projection
return hidden
def Encoder(symbolic, observation_size, embedding_size, activation_function='relu'):
if symbolic:
return SymbolicEncoder(observation_size, embedding_size, activation_function)
else:
return VisualEncoder(embedding_size, activation_function)
class RewardModel(jit.ScriptModule):
def __init__(self, belief_size, state_size, hidden_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(belief_size + state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, 1)
@jit.script_method
def forward(self, belief, state):
x = torch.cat([belief, state],dim=1)
hidden = self.act_fn(self.fc1(x))
hidden = self.act_fn(self.fc2(hidden))
reward = self.fc3(hidden)
reward = reward.squeeze(dim=-1)
return reward
class ValueModel(nn.Module):
def __init__(self, belief_size, state_size, hidden_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(belief_size + state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, hidden_size)
self.fc4 = nn.Linear(hidden_size, 1)
def forward(self, belief, state):
x = torch.cat([belief, state],dim=1)
hidden = self.act_fn(self.fc1(x))
hidden = self.act_fn(self.fc2(hidden))
hidden = self.act_fn(self.fc3(hidden))
reward = self.fc4(hidden).squeeze(dim=1)
return reward
class ActorModel(nn.Module):
def __init__(self, action_size, belief_size, state_size, hidden_size, mean_scale=5, min_std=1e-4, init_std=5, activation_function="elu",
fix_speed=False, throttle_base=0.3):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fix_speed = fix_speed
self.throtlle_base = throttle_base
self.fc1 = nn.Linear(belief_size + state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, hidden_size)
self.fc4 = nn.Linear(hidden_size, hidden_size)
if self.fix_speed:
self.fc5 = nn.Linear(hidden_size, 2 * (action_size-1)) # TODO: only predict the direction, remove this latter
else:
self.fc5 = nn.Linear(hidden_size, 2 * (action_size))
self.min_std = min_std
self.init_std = init_std
self.mean_scale = mean_scale
# def forward(self, belief, state, deterministic=False, with_logprob=False):
# hidden = self.act_fn(self.fc1(torch.cat([belief, state], dim=-1)))
# # print("first hidden", hidden[0][1], self.fc1.weight[1])
# hidden = self.act_fn(self.fc2(hidden))
# hidden = self.act_fn(self.fc3(hidden))
# hidden = self.act_fn(self.fc4(hidden))
# # print("middle hidden", self.fc4.weight)
# hidden = self.fc5(hidden)
#
# raw_init_std = np.log(np.exp(self.init_std) - 1)
# mean, std = torch.chunk(hidden, 2, dim=-1)
# mean = self.mean_scale * torch.tanh(
# mean / self.mean_scale) # bound the action to [-5, 5] --> to avoid numerical instabilities. For computing log-probabilities, we need to invert the tanh and this becomes difficult in highly saturated regions.
# std = F.softplus(std + raw_init_std) + self.min_std
# pi_dist = torch.distributions.Normal(mean, std)
#
# # mean, log_std = torch.chunk(hidden, 2, dim=-1)
# # log_std = torch.clamp(log_std, self.LOG_STD_MIN, self.LOG_STD_MAX)
# # std = torch.exp(log_std)
#
# # pi_dist = torch.distributions.Normal(mean, std)
#
# if deterministic:
# pi_action = mean
# else:
# pi_action = pi_dist.rsample() # shape [batch*(chunk-1), act_dim]
#
# if with_logprob:
# logp_pi = pi_dist.log_prob(pi_action).sum(axis=-1) # shape [batch*(chunk-1)]
# # print("check action.shape", pi_action.shape)
# # print("logp.shape", logp_pi.shape)
# # print("before sum(axis=1)", (2*(np.log(2) - pi_action - F.softplus(-2*pi_action))).shape)
# logp_pi -= (2 * (np.log(2) - pi_action - F.softplus(-2 * pi_action))).sum(axis=1)
# else:
# logp_pi = None
#
# pi_action = torch.tanh(pi_action)
#
# return pi_action, logp_pi
def forward(self, belief, state, deterministic=False, with_logprob=False,):
raw_init_std = np.log(np.exp(self.init_std) - 1)
hidden = self.act_fn(self.fc1(torch.cat([belief, state], dim=-1)))
hidden = self.act_fn(self.fc2(hidden))
hidden = self.act_fn(self.fc3(hidden))
hidden = self.act_fn(self.fc4(hidden))
hidden = self.fc5(hidden)
mean, std = torch.chunk(hidden, 2, dim=-1)
# # ---------
# mean = self.mean_scale * torch.tanh(mean / self.mean_scale) # bound the action to [-5, 5] --> to avoid numerical instabilities. For computing log-probabilities, we need to invert the tanh and this becomes difficult in highly saturated regions.
# speed = torch.full(mean.shape, 0.3).to("cuda")
# mean = torch.cat((mean, speed), -1)
#
# std = F.softplus(std + raw_init_std) + self.min_std
#
# speed = torch.full(std.shape, 0.0).to("cuda")
# std = torch.cat((std, speed), -1)
#
# dist = torch.distributions.Normal(mean, std)
# transform = [torch.distributions.transforms.TanhTransform()]
# dist = torch.distributions.TransformedDistribution(dist, transform)
# dist = torch.distributions.independent.Independent(dist, 1) # Introduces dependence between actions dimension
# dist = SampleDist(dist) # because after transform a distribution, some methods may become invalid, such as entropy, mean and mode, we need SmapleDist to approximate it.
# return dist # dist ~ tanh(Normal(mean, std)); remember when sampling, using rsample() to adopt the reparameterization trick
mean = self.mean_scale * torch.tanh(mean / self.mean_scale) # bound the action to [-5, 5] --> to avoid numerical instabilities. For computing log-probabilities, we need to invert the tanh and this becomes difficult in highly saturated regions.
std = F.softplus(std + raw_init_std) + self.min_std
dist = torch.distributions.Normal(mean, std)
# TanhTransform = ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)])
if self.fix_speed:
transform = [AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)]
else:
transform = [AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.), # TanhTransform
AffineTransform(loc=torch.tensor([0.0, self.throtlle_base]).to("cuda"),
scale=torch.tensor([1.0, 0.2]).to("cuda"))] # TODO: this is limited at donkeycar env
dist = TransformedDistribution(dist, transform)
# dist = torch.distributions.independent.Independent(dist, 1) # Introduces dependence between actions dimension
dist = SampleDist(dist) # because after transform a distribution, some methods may become invalid, such as entropy, mean and mode, we need SmapleDist to approximate it.
if deterministic:
action = dist.mean
else:
action = dist.rsample()
# not use logprob now
if with_logprob:
logp_pi = dist.log_prob(action).sum(dim=1)
else:
logp_pi = None
# action dim: [batch, act_dim], log_pi dim:[batch]
return action if not self.fix_speed else torch.cat((action, self.throtlle_base*torch.ones_like(action, requires_grad=False)), dim=-1), logp_pi # dist ~ tanh(Normal(mean, std)); remember when sampling, using rsample() to adopt the reparameterization trick
class SampleDist:
"""
After TransformedDistribution, many methods becomes invalid, therefore, we need to approximate them.
"""
def __init__(self, dist: torch.distributions.Distribution, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
@property
def mean(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
return torch.mean(sample, 0)
def mode(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
# print("dist in mode", sample.shape)
logprob = dist.log_prob(sample)
batch_size = sample.size(1)
feature_size = sample.size(2)
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
return torch.gather(sample, 0, indices).squeeze(0)
def entropy(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
return -torch.mean(logprob, 0)
class PCONTModel(nn.Module):
""" predict the prob of whether a state is a terminal state. """
def __init__(self, belief_size, state_size, hidden_size, activation_function='relu'):
super().__init__()
self.act_fn = getattr(F, activation_function)
self.fc1 = nn.Linear(belief_size + state_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, hidden_size)
self.fc4 = nn.Linear(hidden_size, 1)
def forward(self, belief, state):
x = torch.cat([belief, state],dim=1)
hidden = self.act_fn(self.fc1(x))
hidden = self.act_fn(self.fc2(hidden))
hidden = self.act_fn(self.fc3(hidden))
x = self.fc4(hidden).squeeze(dim=1)
p = torch.sigmoid(x)
return p